Supporting Information

Tetrameric A $\beta 40$ and $A \beta 42 \boldsymbol{\beta}$-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution

Phuong H Nguyen, ${ }^{1,2}$ Josep M Campanera, ${ }^{3}$ Son Tung Ngo, ${ }^{4,5}$ Antoine Loquet, ${ }^{6}$ Philippe Derreumaux ${ }^{7,8^{*}}$

1 CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France

2 Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France

3 Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain

4 Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5 Faculty of Applied Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
6 Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248 CNRS, Université de Bordeaux, France

7 Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam 8 Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam

[^0]
(A) REMD simulations

The GROMACS program was used with periodic boundary conditions, a timestep of 2 fs using SHAKE or LINCS and the velocity Verlet integrator. ${ }^{1}$ The peptides at pH 7 have $\mathrm{NH}_{3}{ }^{+}$ and CO_{2} termini, deprotonated Glu and Asp, protonated Arg and Lys, and neutral His with a protonated Nepsilon atom. The temperature distributions were determined by using van der Spoel's method. ${ }^{2}$

The perfect barrels of $A \beta 40$ and $A \beta 42$ were centred in truncated octahedron boxes of 519 and $729 \mathrm{~nm}^{\text {s }}$ containing 17000 and 23000 TIP3P water molecules, leading to a peptide concentration of 12.8 and 9.2 mM . The systems were neutralized by Na^{+}ions resulting in 52000 and 72000 atoms for $A \beta 40$ and $A \beta 42$, respectively. The first protein force field is the Amber ff99SB-ILDN force field. The velocity-rescaling thermostat was employed, electrostatic interactions were calculated using the particle mesh Ewald method and a cut-off of 1.1 nm , and Van der Waals interactions used a cut-off of $1.2 \mathrm{~nm} .^{3-5}$ REMD simulations were performed with 64 and 72 replicas for $A \beta 40$ and $A \beta 42$, with a temperature range of $300-$ 400 K . Exchanges between two consecutive replicas were attempted every 2 ps , leading to a mean acceptance ratio of 25%, and each replica ran for 350 ns . The total CPU time is 1.800.000 hours using 1152 cores and 16 cores/replica. Secondary structure was determined using the STRIDE program. ${ }^{6}$ CCS values for the β-barrel and non β-barrel states were calculated using the MOBCAL software. ${ }^{7}$

REMD simulations were also repeated with the OPLS/TIP3P force field and the CHARMM36m/TIP3P-modified force field for 150 ns each starting from the most populated cluster Amber ff99SB-ILDN for both $A \beta 40$ and A $\beta 442$ (states S1 see Figure 3). For both systems, we used the same number of replicas as for Amber f99ILDN/TIP3 and the CPU time using OPLS/TIP3P and CHARM36m/TIP3P force fields is 1.500 .000 hours.

REMD simulation with Amber99SB-DISP was also performed starting from the S1 state for A $\beta 42$ peptide only. Since DISP is based on the TIP4P force field, we used up to 90 replicas, covering 300 to 400 K and leading to an acceptance ratio of 25%. For this simulation, the CPU time is 810.000 hours using 1800 cores and 20 cores/replica.

(B) Analysis of A $\beta 40$ and A $\beta 42$ by REMD with Amber ff99SB-ILDN/TIP3P

Figure S1. Secondary structure propensities of each amino acid of A $\beta 40$ (black) and A $\beta 42$ (red) peptides at 315 K using the time interval 50-350 ns. Error bars of 2% max are not shown for clarity.

Figure S2. The first ten clusters of $A \beta 40$ and $A \beta 42$ tetramers at 315 K using the time interval 50-350 ns.

Figure S3. Accumulated population of the barrel structures for $A \beta 40$ (black) and $A \beta 42$ (red) peptides at 315 K . Here, the accumulated population is calculated as: $p_{\text {acc }}(t)=\frac{1}{\tau} \int_{0}^{t} p(\tau)$

System	State	$\mathrm{P}[\%]$	RMSD $[\mathrm{nm}]$	$\mathrm{R}_{\mathrm{g}}[\mathrm{nm}]$	N_{HB}	$\mathrm{N}_{\mathrm{HB} 1}$	$\mathrm{~N}_{\mathrm{HB} 2}$	$\mathrm{~N}_{\mathrm{HB} 3}$	CCS $\left[\mathrm{A}^{2}\right]$
	1	31.43	0.60	1.33	11.02	6.76	3.93	6.33	2197
$\mathrm{~A} \beta 40$	2	25.12	0.74	1.36	10.25	7.10	2.87	5.35	1933
	3	19.55	0.48	1.34	11.28	7.71	3.29	5.39	2299
	4	7.32	0.90	1.40	9.54	6.77	2.06	4.24	2342
$\mathrm{~A} \beta 42$	1	52.68	0.44	1.34	13.10	6.04	6.68	11.32	2030
	2	16.32	0.76	1.51	12.38	4.64	7.65	15.30	2474

Table S1. A $\beta 40$ and A $\beta 42$ non β-barrel characterizations using the time interval 50-350 ns at 315 K.For each state, we give the population P (in \%), the tilt angle α (in degrees), the inner diameter of the pore (in nm), the RMSD (in nm) with respect to state 0 and the radius of gyration Rg (in nm) using only residues 11-36, and the total number of interchain H -bonds between residues 11-36 ($\mathrm{N}_{\text {нв }}$), interpeptide H-bonds between residues 11-21 and 11-21 $\left(\mathrm{N}_{\text {ні }}\right)$, between residues 29-36 and 29-36 ($\mathrm{N}_{\text {нت }}$), and between residues 29-40 ($\mathrm{N}_{\text {нت }}$). We also give the collision cross-section surface (CCS). All values are obtained using all conformations belonging to each cluster. Error bars on all CCS values are on the order of $75 \AA^{2}$

System	Salt-bridge	Population			
		chain 1	chain 2	chain 3	chain 4
	E22-K28	18 ± 1.7	0 ± 0	0 ± 0	14 ± 0.5
$\mathrm{~A} \beta 40$	D23-K28	8 ± 2.9	4 ± 0.7	5 ± 1.5	3 ± 1.0
$\mathrm{~A} \beta 42$	E22-K28	15 ± 1.5	1 ± 0.2	0 ± 0	16 ± 0.3
	D23-K28	9 ± 2.0	3 ± 0.3	3 ± 0.5	7 ± 1.8

Table S2. Populations of the intramolecular E22-K28 and D23-K28 salt-bridges in the four chains (or hairpins) using the time intervals 50 to 350 ns . A salt-bridge is considered formed if the distances are between the CG atom of D23 (or CD atom of E22) and the NZ atom of K28 are below a cutoff distance of 0.45 nm .

Figure S4. The side-chain - side-chain contact probabilities (in \%) of the β-barrel states for the A $\beta 40$ (left) and A $\beta 42$ (right) tetramers at 315 K . The intramolecular maps are averaged over the four chains and the intermolecular maps averaged over the six pairs.

Figure S5. Differences in the contact map probabilities (in \%) between the β-barrel states of $A \beta 42$ and $A \beta 40$ at 315 K . Positive values indicate higher probability for $A \beta 42$. For clarity, absolute values between 0 and 4% (intramolecular) and between 0 and 2% (intermolecular) are not shown.

(C) Analysis of A $\beta 40$ and A $\beta 42$ by REMD with OPLS/TIP3P

Figure S6. Time evolutions (left panels) and probability distributions (right panels) of the inner pore diameter and tilt angle for the A $\beta 40$ (black) and $\mathrm{A} \beta 42$ (red) peptides using the full 150 ns REMD at 315 K with OPLS/TIP3P.

Figure S7. Time evolutions (left panels) and probability distributions (right panels) of the inner pore diameter and tilt angle for the $A \beta 40$ (black) and $A \beta 42$ (red) peptides using the full 150 ns REMD at 315 K with CHARMM36m/TIP3P-modified.

Figure S8. Time evolutions (left panels) and probability distributions (right panels) of the inner pore diameter and tilt angle for the A $\beta 42$ peptides using the full 150 ns REMD at 315 K with AMBER99-DISP.

References

(1) Van der Spoel, D., Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H. J. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701-1718.
(2) Patriksson, A.; van der Spoel ; D.A. Temperature Predictor for Parallel Tempering Simulations. Phys. Chem. Chem. Phys. 2008, 10, 2073-2077.
(3) Evans, D.J., Holian, B.L. The Nose-Hoover thermostat. J. Chem. Phys. 1985, 83, 4069.
(4) Parinello, M.; Rahman, A. M. Crystal Structures and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980, 45, 1196-1199.
(5) Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577-8593.
(6) Frishman, D.; Argos, P. Knowledge-based Protein Secondary Structure Assignment. Proteins 1995, 23, 566-579.
(7) Mesleh, M.F.; Hunter, J.M.; Shvartsburg, A.A.; Schatz, G.C.; Jarrold, M.F. Structural Information from Ion Mobility Measurements: Effects of the LongRange Potential. J. Phys. Chem. 1996, 100, 16082-16086.

[^0]: * Correspondence philippe.derreumaux@tdtu.edu.vn

