Supporting Information for:

In situ Vibrational Probes of Epoxy Gelation

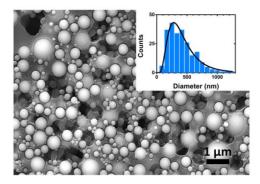
Lérys Granado^{123*}, Stefan Kempa^{1*}, Laurence John Gregoriades¹, Frank Brüning¹, Anne-Caroline Genix², Jean-Louis Bantignies², Nicole Fréty³ and Eric Anglaret²

Total number of figure: 6. Total number of page: 4.

Table of Content

1.	C	haracterization of system (A)	2
	1.	Fillers Characterization.	2
	2.	Glass transition temperature	2
	3.	Stoichiometry epoxy:hardener (r) by 1H NMR	2
	4.	Hardener functionality (f) by MALDI-ToF	3
2.	N	TR cure monitoring of system (B)	4
3.	N	IR cure monitoring of system (C)	4

¹ Atotech Deutschland GmbH, Erasmusstraβe 20, 10553 Berlin, Germany


²L2C, Univ. Montpellier, CNRS, 34095 Montpellier, France

³ ICGM, Univ. Montpellier, CNRS, 34095 Montpellier, France

^{*} Corresponding Authors: $\underline{lerys.granado@live.fr} \ and \ \underline{stefan.kempa@atotech.com}$

1. Characterization of system (A)

1. Fillers Characterization

Figure S1. Scanning electron micrograph of the composite surface revealing the glass fillers (secondary electron mode). Inset: filler diameter distribution as determined from image analysis (centered near 300 nm).

2. Glass transition temperature

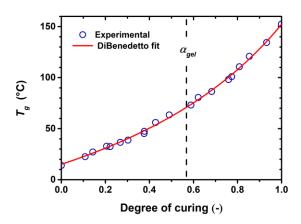


Figure S2. Evolution of the glass transition temperature as a function of the degree of curing, determined using DSC at 10 K/min.

3. Stoichiometry epoxy:hardener (r) by ¹H NMR

The uncured polymer matrix was dissolved in CDCl₃ and filtered, and the NMR spectrum was acquired on a Bruker AC-400 spectrometer. The spectrum of the polymer matrix is displayed in Figure S3. Oxirane protons are observed at 2.6-2.9 ppm (OC H_2) and 3.4-3.5 (OCH). The peaks in the range 3.7-4.5 ppm are assigned to two types of protons: (-O-C H_2) from the glycidyl moieties of epoxy and (-C H_2 -) of methylene bridge of the phenol-formaldehyde hardener. The aromatic protons (6.7-8.3 ppm) count theoretically for 4 protons from bisphenolic epoxy and ca. 3 protons for phenol-formaldehyde oligomers (one OH + 2 CH₂ per aromatic ring, see next Figure). The observed aromatic protons count is 6.89, agreeing with the theoretical count in case of stoichiometric ratio (= 7). Thus, we estimate the stoichiometric ratio at $r \sim 1$.

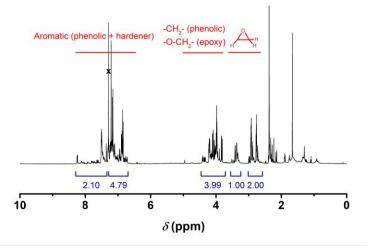
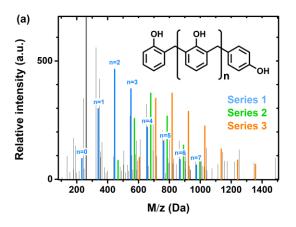



Figure S3. ¹H NMR spectrum of the polymer matrix in CDCl₃.

4. Hardener functionality (f) by MALDI-ToF

The functionality of the phenol-formaldehyde hardener of system (A) and (B) was investigated by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF). The uncured film was dissolved in acetone and filtered (PTFE 0.22 μ m). 2,5-Dihydroxybenzoic acid (DHB) was used as matrix without any cationising agent. Acetone was used as solvent (mixture polymer:DHB solutions, 1:1, v:v; 1 μ L was dried on the target plate). The spectrometer was a Bruker Ultraflex ToF/ToF. The laser wavelength was 337 nm, with an irradiation frequency of 100 Hz. The ions were accelerated with a voltage of +25 kV.

Figure S4a shows a typical MALDI-ToF spectrum. Several incrementing units are identified on the mass spectrum, every forming 8 series of peaks. The observed incrementing molecular weight (M_w) of 106.0 ± 0.1 Da perfectly matches with the M_w of phenol-formaldehyde monomer (phenol + methylene bridge). The 2 most relevant series due to their high intensity are highlighted in colors. Series 1 is associated to $(M + CH_2OH \text{ (end group)} + H^+)$ adduct and series 2 to $(M + 2 \text{ CH}_2OH \text{ (end group)} + DGEBA + H^+)$. The discrepancy between theoretical and observed adducts M_w is less than 2 Da. For system (A), the distribution of the hardener functionality is then deduced from series 1, leading to a distribution centered on f = 4 (Figure S4b). A very close spectrum was recorded for system (B), therefore the functionality of (B) is considered identical to that of (A).

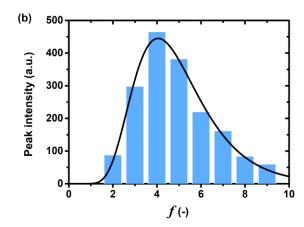


Figure S4. (a) MALDI-ToF spectrum of the system (A), with highlighted relevant series with repetition units of 106.0 Da.

2. NIR cure monitoring of system (B)

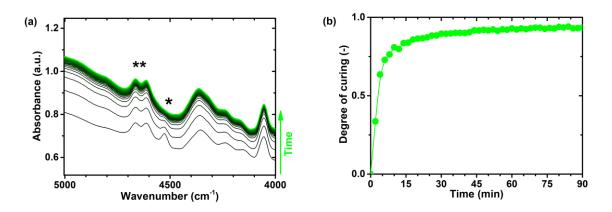
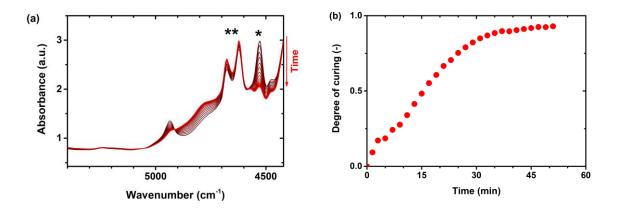



Figure S5. (a) Typical NIR spectra during curing of system (B) at 190 °C. (b) Associated kinetic profile.

3. NIR cure monitoring of system (C)

Figure S6. (a) Typical NIR spectra during curing of system (C) at 60 °C. (b) Associated kinetic profile.