Supporting Information for

Single-, Double-, and Triple-Network Macroporous Rubbers as a Passive Sampler

Berkant YETISKIN¹, Oktay E. TUREYEN², Atilla YILMAZ², Sevil D. YAKAN², Oya S.

OKAY²*, and Oguz OKAY¹*

¹Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

²Department Ocean Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.

Corresponding Authors:

*(O.O.) E-mail: okayo@itu.edu.tr

*(O.S.O.) E-mail: oya.okay@itu.edu.tr

Table of Contents

Table S1. Gel fractions W_g for SN, DN, and TN rubbers formed at various w_R .S-2**Figure S1. (a):** Experimental data from naphthalene sorption tests from aqueous solutions duringthe first 12 h (symbols), and the results of curve fitting using the first (solid curves) and secondorder sorption kinetics (dashed curves).S-3

Code	WR	$W_{ m g}$
SN	0	1.0 (0.1)
DN	0.45 (0.03)	1.08 (0.02)
DN	0.85 (0.05)	1.03 (0.04)
DN	1.35 (0.08)	1.02 (0.01)
DN	1.9 (0.2)	1.02 (0.01)
TN	4.5 (0.4)	0.94 (0.04)

Table S1. Gel fractions W_g for SN, DN, and TN rubbers formed at various w_R .^a

^a Standard deviations are in parenthesis.

Figure S1. (a): Experimental data from naphthalene sorption tests from aqueous solutions during the first 12 h (symbols), and the results of curve fitting using the first (solid curves) and second order sorption kinetics (dashed curves). (b): The rate constant *k* and *k'* of the naphthalene sorption process estimated from 1st and 2nd order kinetics, respectively, as a function of the type of rubbers. For the second order kinetics, the equation $dq_t/dt = k' (q_e - q_t)^2$ was used in the calculations which leads to $C_t = C_o - t/(a + bt)$ where $a = (a q_e^2)^{-1}$ and $b = q_e^{-1}$.