Supporting Information for

Single-, Double-, and Triple-Network Macroporous Rubbers as a Passive Sampler

Berkant YETISKIN ${ }^{1}$, Oktay E. TUREYEN² , Atilla YILMAZ², Sevil D. YAKAN², Oya S.
$\mathrm{OKAY}^{2 *}$, and Oguz OKAY ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
${ }^{2}$ Department Ocean Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.

Corresponding Authors:
*(O.O.) E-mail: okayo@itu.edu.tr
*(O.S.O.) E-mail: oya.okay@itu.edu.tr

Table of Contents

Table S1. Gel fractions W_{g} for SN, DN, and TN rubbers formed at various w_{R}.
Figure S1. (a): Experimental data from naphthalene sorption tests from aqueous solutions during the first 12 h (symbols), and the results of curve fitting using the first (solid curves) and second order sorption kinetics (dashed curves).

Table S1. Gel fractions W_{g} for SN, DN, and TN rubbers formed at various $w_{\mathrm{R}}{ }^{\text {a }}{ }^{\text {a }}$

Code	w_{R}	W_{g}
SN	0	$1.0(0.1)$
DN	$0.45(0.03)$	$1.08(0.02)$
DN	$0.85(0.05)$	$1.03(0.04)$
DN	$1.35(0.08)$	$1.02(0.01)$
DN	$1.9(0.2)$	$1.02(0.01)$
TN	$4.5(0.4)$	$0.94(0.04)$

${ }^{\mathrm{a}}$ Standard deviations are in parenthesis.

Figure S1. (a): Experimental data from naphthalene sorption tests from aqueous solutions during the first 12 h (symbols), and the results of curve fitting using the first (solid curves) and second order sorption kinetics (dashed curves). (b): The rate constant k and k^{\prime} of the naphthalene sorption process estimated from $1^{\text {st }}$ and $2^{\text {nd }}$ order kinetics, respectively, as a function of the type of rubbers. For the second order kinetics, the equation $d q_{t} / d t=k^{\prime}\left(q_{e}-q_{t}\right)^{2}$ was used in the calculations which leads to $C_{t}=C_{o}-t /(a+b t)$ where $a=\left(a q_{e}{ }^{2}\right)^{-1}$ and $b=q_{e}{ }^{-1}$.

