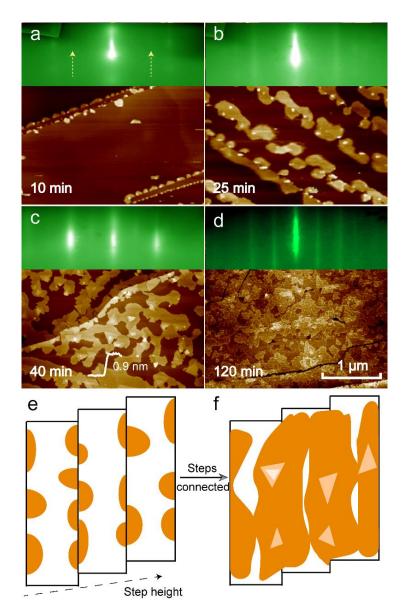
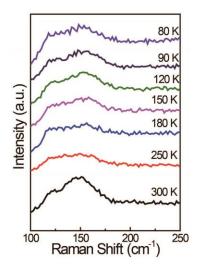
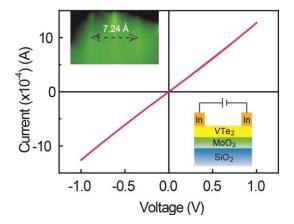
## Supporting Information


## Multiple Transitions of Charge Density Wave Order in Epitaxial Few-layered 1T'-VTe<sub>2</sub> Films

Tian Dai<sup>1</sup>, Songdan Kang<sup>1</sup>, Xingyuan Ma<sup>1</sup>, Shuai Dang<sup>1</sup>, Hongwei Li<sup>1</sup>, Zilin Ruan<sup>2</sup>, Wenqi Zhou<sup>1</sup>, Ping Hu<sup>3</sup>, Shuwei Li<sup>1</sup>, Shuxiang Wu<sup>1</sup>\* (wushx3@ mail.sysu.edu.cn)


<sup>1</sup>State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

<sup>2</sup>School of materials Science and Engineering, Kunming University of Science and technology, Kunming, 650093, People's Republic of China


<sup>3</sup>School of Electronic Information and Electrical Engineering, Huizhou University, No.46, Yanda Road, Huizhou City, 516000, People's Republic of China



**Figure S1.** Surface topography measured by AFM and corresponding in situ RHEED patterns at different growth periods for the layer-by-layer epitaxial growth of VTe<sub>2</sub> thin films on HOPG substrates. (a) After growth of 10 min, RHEED streaks of VTe<sub>2</sub> films emerged and the coverage rate is approximately 3 %. (b) After growth of 25 min, with the coverage of ~40 %. (c) After growth of 40 min, the RHEED streaks of the substrates were disappeared and the monolayer VTe<sub>2</sub> film was obtained. (d) After growth of 120 min, shows an approximately 3 layer VTe<sub>2</sub> films with uneven coverage. (e), (f) Growth mode of VTe<sub>2</sub> films on HOPG.



**Figure S2.** Temperature dependent Raman shift of monolayer  $VTe_2$  films, the  $A_{1g}$  peak became too broad to identify the peak position, while the peaks are still detectable.



**Figure S3.** I-V curve and RHEED patterns of  $VTe_2$  grown on  $MoO_3$ , indicating the same structure as  $VTe_2$  grown on HOPG and graphene.