Supporting Information

Flower-like Mn-doped Magnetic Nanoparticles Functionalized with α_νβ₃Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death.

S. Del Sol-Fernández^{1, #}, Y. Portilla-Tundidor^{2, #}, L. Gutiérrez³, O.F. Odio¹, E. Reguera^{1, *}, D.F. Barber^{2, *}, M.P. Morales^{4, *}.

¹Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria (CICATA-Legaria), Calz Legaria 694, Col. Irrigación, 11500 Ciudad de México, México.

²Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049 Madrid, Spain

³Departamento de Química Analítica, Universidad de Zaragoza, Instituto de Nanociencia de Aragón, Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC) and CIBER-BBN, 50009 Zaragoza, Spain.

⁴Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.

AUTHOR INFORMATION

Co-senior authors and corresponding authors

*E-mail: puerto@icmm.csic.es (M.P.M)

*E-mail: dfbarber@cnb.csic.es (D.F.B)

*E-mail: edilso.reguera@gmail.com (E.R)

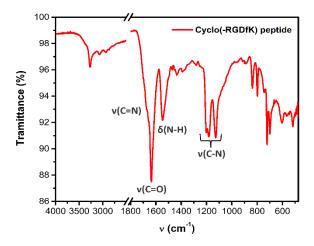


Figure S1. ATR spectra of Cyclo(-RGDfK) peptide.

S2. Estimation of the number of cRGD peptide molecules on NF-DMSA nanoparticles surface.

To estimate the amount of peptide molecules per nanoparticle, we consider the particle as a sphere to simplify the calculations, so its volume is given by:

$$V = \frac{4}{3}\pi r^3$$

where, the diameter from TEM is D = 18.3 nm, so the volume of each nanoparticle is:

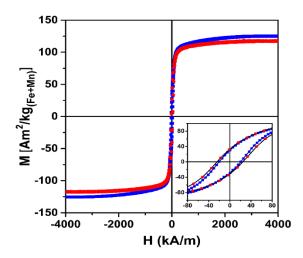
$$V = 3591 \times 10^{-21} cm^3$$
.

The nanoparticle volume in one gram is obtained as follows:

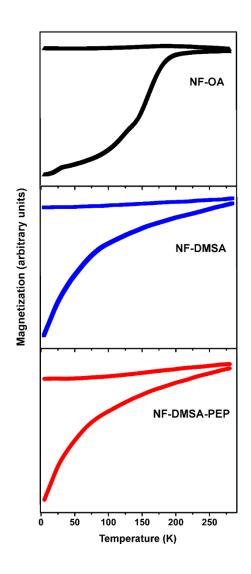
$$V_{Fe_3O_4} = \frac{m}{\rho_{Fe_3O_4}} = \frac{1gr}{5.1\frac{gr}{cm^3}} = 0.196cm^3,$$

so, the total number of nanoparticles in one gram is:

$$N^{\circ}$$
 of NPs per gram = $\frac{V_{Fe_3O_4}}{V}$ = 5.46 × 10²².

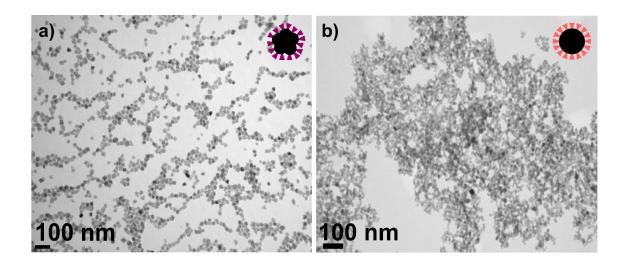

From the Micro BCA Protein Assay Reagent Kit analysis, we know that $1\frac{mg\ NPs}{mL}$ is equivalent to $1.47\frac{\mu g\ Peptide}{\mu L}$. To know the number of peptide molecules in $1.47\frac{\mu g\ Peptide}{\mu L}$, we divide by the molecular weight of it and multiply it by Avogadro's number $N_A = 6.022\ 141\ 29 \times 10^{23} mol^{-1}$, so:

$$N^{\circ}$$
 of peptide molecules per gram = $\frac{1.47 \times 10^{-3} g}{603.7 \frac{g}{mol}} \times N_A = 1.47 \times 10^{18}$


Therefore, to know the number of peptide molecules per nanoparticle:

$$N^{\circ}$$
 of peptide molecules per particle = $\frac{5.46 \times 10^{22}}{(1.47 \times 10^{15})(10^3)} = 37.19$

(The factor 10^3 in the denominator is due to the equivalence mentioned above)


Figure S2. Hysteresis loops recorded at 5 K for NF-DMSA (blue) and NF-DMSA-PEP (red) nanoparticles. Inset: low field hysteresis loops for both nanoparticles.

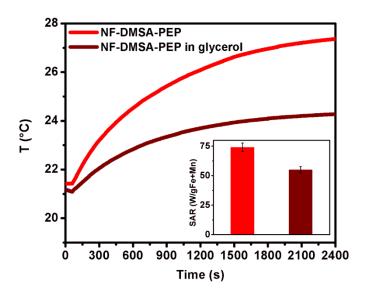

Figure S3. ZFC-FC of NF-OA, NF-DMSA and NF-DMSA-PEP nanoparticles under 100 Oe field.

Table S1. Magnetic properties of NF-DMSA and NF-DMSA-PEP nanoparticles at 5 and 300 K.

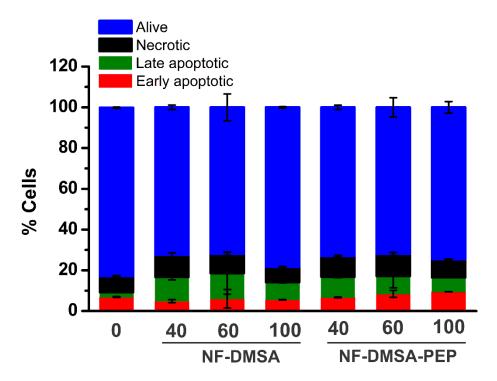

Samples	$M_{S} \\ (Am^{2}/kg(Fe+Mn))$		Mr (Am²/kg(Fe+Mn))		H _C (kA/m)	
	5 K	300 K	5 K	300 K	5 K	300 K
NF-DMSA	125	99	29.4	2.7	20.4	1.25
NF-DMSA-PEP	117	97	30.5	5.2	24.4	2.42

Figure S4. Transmission electron microscope (TEM) images of nanoparticles used as reference samples. (**a**) 20.8±0.1 nm Flower-like Fe₃O₄ nanoparticle coated with citric acid (NF-REF) and (**b**) 12.2±2.3 nm spherical Fe₃O₄ nanoparticle coated with dimercaptosuccinic acid (NP-REF). Inset: Carton images corresponding to NF-REF and NP-REF, respectively.

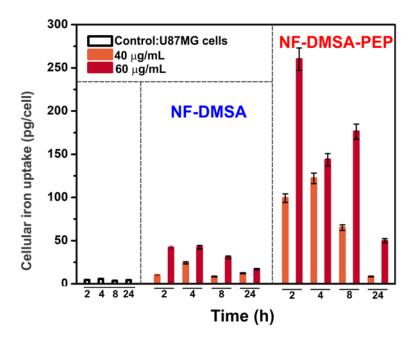
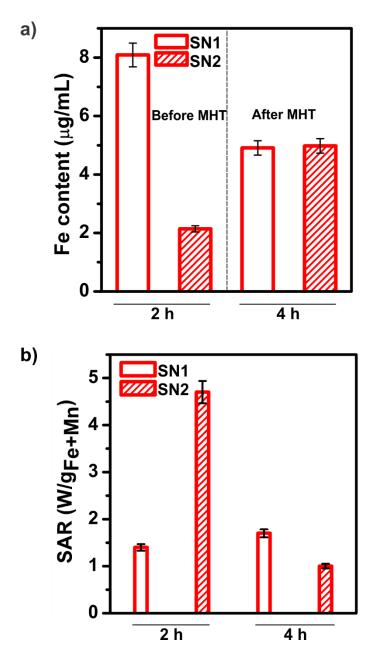


Figure S5. Heating curves of NF-DMSA-PEP in water and NF-DMSA-PEP in a water/glycerol mixture (50/50, v/v) under the experimental condition of (f = 96 kHz, H = 47 kA/m), (V_F = 1ml for NF-DMSA-PEP in water and V_F = 500 μ l NF-DMSA-PEP in a water/glycerol mixture) for 40 minutes. The content of the magnetic ions for the sample was ([Fe + Mn] = 0.45 mg/m L). Inset: SAR values of both samples. The SAR values were calculated using the first 30 s of the initial slopes.


Figure S6. Annexin-V/PI analysis by flow cytometry of U87MG cells after incubation with NF-DMSA or NF-DMSA-PEP at 24 h. Concentration was varied between 0-100 μ g Fe/mL concentration of NPs. Data (mean \pm SD) are representative of three independent

experiments. Cell survival was analyzed for FITC-annexin V/propidium iodide staining (Ex/Em = 495/519 nm). The samples were analyzed by flow cytometry, with the FC500 flow cytometer (Beckman Coulter).

Figure S7. Uptake kinetics for NF-DMSA and NF-DMSA-PEP nanoparticles at $(0, 40 \text{ and } 60 \text{ } \mu\text{g} \text{ Fe/mL}$ concentration of NPs in U87MG cells determined by ICP-OES. Data (mean \pm SD) are representative of three independent experiments.

Iron Quantification in supernatants by ICP-OES. The cells have been seeded into a 6-well plate with a density of 2 x 10^4 cells per well (24h, 37°C) in Dulbecco's modified Eagle's medium (DMEM). Then, NF-DMSA-PEP sample at concentration of 60 µg/mL has been added into the plate at different time intervals (0, 2, and 4 h). After incubation, the supernatants have been removed (named in the Figure S8 as SN1), and the cells have been harvested with fresh DMEM. After that, the cells loaded NF-DMSA-PEP have been exposed to an AMF of 96 kHz and 47 kA/m for 1 h. Immediately, after MHT, the new supernatants have been collected and reserved in an Eppendorf tube. The samples (25 µL) have been digested in aqua regia at 60°C overnight and diluted up a volume of 25 mL with deionized water. The amount of iron in each supernatant has been measured by ICP-OES (Perkin Elmer-2400).

Figure S8. (a) Quantification of iron concentration in 1mL of the supernatant before (SN1) and after (SN2) MHT with NF-DMSA-PEP loaded U87MG cells at 2 and 4 h by ICP-OES. Data are shown as mean \pm SD (n = 3) and (b) SAR values of SN1 and SN2 under the same experimental condition (f = 96 kHz, H = 47 kA/m) at 2 h and 4 h. The heating behavior of each supernatant to determine de SAR values have been performed in an Eppendorf tube, after 20 min of ultrasound sonication of the samples.