Organic complexity in protostellar disk candidates: Supporting information

Jennifer B. Bergner, ${ }^{,{ }^{, \dagger}}$ Rafael Martín-Doménech, ${ }^{\ddagger}$ Karin I. Öberg, ${ }^{\ddagger}$ Jes K. Jørgensen, "Elizabeth Artur de la Villarmois, ${ }^{〔}$ and Christian Brinch ${ }^{\S}$
\dagger Harvard University Department of Chemistry and Chemical Biology, Cambridge, MA 02138, USA
\ddagger Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
【Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København, Denmark
§Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
E-mail: jennifer.bergner@cfa.harvard.edu

Moment zero map parameters

Table 1 lists the rms values and velocity ranges used to make the moment zero maps shown in Figures 1 and 2 in the main text.

Table 1: Velocity ranges and rms values used for the integrated intensity maps (Figures 1 and 2) in the main text. For clarity, only upper state quantum numbers are used to identify each line; refer to Table 3 in the main text for full identifiers.

	Ser-emb 1		Ser-emb 7		Ser-emb 8		Ser-emb 15		Ser-emb 17	
	$\begin{gathered} \text { Vel. } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \mathrm{rms} \\ (\mathrm{mJy}) \end{gathered}$	$\begin{gathered} \text { Vel. } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \mathrm{rms} \\ (\mathrm{mJy}) \end{gathered}$	$\begin{gathered} \text { Vel. } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \mathrm{rms} \\ (\mathrm{mJy}) \end{gathered}$	$\begin{gathered} \text { Vel. } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \mathrm{rms} \\ (\mathrm{mJy}) \end{gathered}$	$\begin{aligned} & \text { Vel. } \\ & (\mathrm{km} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \mathrm{rms} \\ (\mathrm{mJy}) \end{gathered}$
$\mathrm{C}^{18} \mathrm{O} 2$	6.7-10.5	4.1	6.0-12.0	5.4	6.0-10.7	5.6	8.2-12.5	4.4	4.7-10.5	5.7
$\mathrm{CH}_{3} \mathrm{OH} 5_{1,4}$	2.6-11.6	6.8	6.2-11.6	4.1	2.6-14.0	6.5	8.6-12.2	3.2	2.0-13.4	7.5
$\mathrm{CH}_{3} \mathrm{OH} 10{ }_{2,8}$	7.0-10.2	2.9	...	\ldots	4.5-12.7	5.4	5.1-10.8	3.5
$\mathrm{CH}_{3} \mathrm{OCH}_{3} 13_{0,13}$	6.4-12.1	3.7	\ldots	...	3.2-12.1	5.5	4.5-12.1	4.3
$\mathrm{CH}_{3} \mathrm{OCHO} 194,15$	5.7-9.5	3.4	\ldots	...	5.7-12.6	5.0	4.4-10.1	4.1
$\mathrm{NH}_{2} \mathrm{CHO} 12_{1,12}$	6.8-9.8	3.2	\ldots	...	6.2-12.8	5.2	5.0-12.8	5.3
$\mathrm{CH}_{2} \mathrm{CO} 12_{1,11}$	5.6-12.1	4.7	...	\ldots	4.4-12.1	5.4	4.4-12.1	5.1

Spectral line fits

Figures $1-4$ show Gaussian fits to the observed lines of each COM, analogous to Figure 3 in the main text.

Figure 1: $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ spectral lines. Blue lines show the spectra extracted from the continuum peak pixel, and shaded regions represent the rms. Red lines show Gaussian fits to the data.

Figure 2: $\mathrm{CH}_{3} \mathrm{OCHO}$ spectral lines. Blue lines show the spectra extracted from the continuum peak pixel, and shaded regions represent the rms. Red lines show Gaussian fits to the data.

Figure 3: $\mathrm{NH}_{2} \mathrm{CHO}$ spectral lines. Blue lines show the spectra extracted from the continuum peak pixel, and shaded regions represent the rms. Red lines show Gaussian fits to the data.

Figure 4: $\mathrm{CH}_{2} \mathrm{CO}$ spectra lines. Blue lines show the spectra extracted from the continuum peak pixel, and shaded regions represent the rms. Red lines show Gaussian fits to the data.

Full spectra

Figures 5-8 show the full spectra extracted from the continuum peak pixel in Ser-emb 1, 7, 8, and 15 , analogous to Figure 5 in the main text. For Ser-emb 1 and 8 (Figures 5 and 7) colored lines show the synthetic spectra of COMs detected in each source.

Figure 5: Full spectrum extracted from the continuum peak pixel in Ser-emb 1 (grey line), along with synthetic spectra of the detected COMs (colored lines). Spectra are calculated assuming the $\mathrm{CH}_{3} \mathrm{OH}$ rotational temperature.

Figure 6: Full spectrum extracted from the continuum peak pixel in Ser-emb 7 (grey line).

Figure 7: Full spectrum extracted from the continuum peak pixel in Ser-emb 8 (grey line), along with synthetic spectra of the detected COMs (colored lines). Spectra are calculated assuming the $\mathrm{CH}_{3} \mathrm{OH}$ rotational temperature.

Figure 8: Full spectrum extracted from the continuum peak pixel in Ser-emb 15 (grey line).

Population diagram diagram fitting

For the MCMC population diagram fits to $\mathrm{CH}_{3} \mathrm{OH}$, we use a flat prior $10^{5}<\mathrm{N}_{T}<10^{20}$ cm^{-2} and $100<\mathrm{T}_{r}<400 \mathrm{~K} .200$ walkers are propagated for 1000 steps, and the samples are well converged. Walker chains and corner plots for each source are shown in Figures 9-11 for the maximum beam dilution case.

$$
\mathrm{N}_{T}\left(10^{17} \mathrm{~cm}^{-2}\right)
$$

$\mathrm{T}_{\mathrm{r}}(\mathrm{K})$

Figure 9: Ser-emb 1 rotational diagram MCMC fit results. The corner plot is shown on the left and the walker chain on the right.

Figure 10: Ser-emb 8 rotational diagram MCMC fit results. The corner plot is shown on the left and the walker chain on the right.

Figure 11: Ser-emb 17 rotational diagram MCMC fit results. The corner plot is shown on the left and the walker chain on the right.

