Supporting Information

Effects of Standing Waves on the Growth and Stability of Vapor Deposited Polymer Films

Prathamesh Karandikar, Mark M. De Luna, Malancha Gupta*

Mork Family Department of Chemical Engineering and Materials Science, University of

Southern California, Los Angeles, California, 90089, U.S.A.

*Corresponding Author Email: malanchg@usc.edu

Description of videos: Videos of *in situ* modulation of a silicone oil lens captured using an iPhone X camera and polymer deposition onto moving liquids are provided in MP4 format. Agitation of polymer films after deposition are also included. Videos are set to 2X playback speed.

Video S1: Modulation via sound at 250 Hz of a lens of 5 cSt silicone oil on a Krytox bath.

Video S2: Deposition of crosslinked fluoropolymer on an elongated 5 cSt silicone oil lens on a Krytox bath.

Video S3: Rupturing of a 25 nm crosslinked fluoropolymer film on a 5 cSt silicone oil lens on a Krytox bath via agitation at 250 Hz and 6 Vpp amplitude.

Video S4: Elongation of a 5 cSt silicone oil lens on a Krytox bath encapsulated with 1µm of linear fluoropolymer at 250 Hz and 3 Vpp amplitude.

Video S5: Rupturing of a 100 nm crosslinked fluoropolymer film on a 5 cSt silicone oil lens on a Krytox bath via agitation at 250 Hz and 7.5 Vpp amplitude.

Video S6: Rupturing of a 300 nm crosslinked fluoropolymer film on a 5 cSt silicone oil lens on a Krytox bath via agitation at 250 Hz and 8.5 Vpp amplitude.

Video S7: Agitation of 1-micron crosslinked fluoropolymer film on a 5 cSt silicone oil lens on a Krytox bath at 250 Hz and 10 Vpp amplitude.

Video S8: Agitation of a 25 nm crosslinked fluoropolymer film on a 5 cSt silicone oil lens on a Krytox bath at 260 Hz and 10 Vpp amplitude.

Thickness measurement: The poly(1H,1H,2H,2H-perfluorodecyl acrylate-co-ethylene glycol diacrylate) (P(PFDA-co-EGDA)) films were grown on the surface of stationary and agitated

silicone oil (regime D) by depositing polymer for 4 minutes. The films were removed from the liquid surface with tweezers and rinsed with hexane to remove the silicone oil. The top surface and cross-section of the dry films were imaged via SEM (JEOL-7001). We measured the cross-sectional thickness at five points on each image. The average thickness of the film was found to be 120 nm \pm 22 nm on the stationary liquid and 115 nm \pm 38 nm on the agitated liquid. The top down images of the dry films in Figure S1 show that a wrinkled film grew over the agitated liquid compared to a smooth film on the stationary liquid.

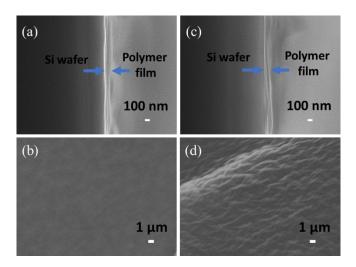


Figure S1. (a) Cross-section and (b) top down image of a dry P(PFDA-co-EGDA) film removed from the stationary liquid surface and (c) cross-section and (d) top down image of a dry P(PFDA-co-EGDA) film removed from the agitated liquid surface.