Supporting Information

Oxidative Capacity Storage of Transient Singlet Oxygen from Photosensitization with a Redox Mediator for Improved Chemiluminescent Sensing

Xiaoya Fan,[†] Yanying Wang,[‡] Li Deng [†], Lin Li [†], Xinfeng Zhang,^{†,*} Peng Wu^{‡,*}

[†]College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

*Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China

*Corresponding authors: <u>zhangxinfeng09@cdut.cn</u> (X. Zhang); <u>wupeng@scu.edu.cn</u> (P. Wu)

Name	Sequences (5'→3')				
BRCA1	GAG CAT ACA TAG GGT TTC TCT TGG TTT				
CS-BRCA1	AAA CCA AGA GAA ACC CTA TGT ATG CTC				
BRCA2	AAA GGG CTT CTG ATT				
CS-BRCA2	AAT CAG AAG CCC TTT				
p53	TTC CTC TGT GCG CCG GTC TCT CCT				
CS-p53	AGG AGA GAC CGG CGC ACA GAG GAA				
One base mismatch-BRCA1	GAG CAT ACA TAG G <mark>C</mark> T TTC TCT TGG TTT				
Three base mismatch-BRCA1	GAG C <mark>T</mark> T ACA TAG G <mark>C</mark> T TTC TCT T <u>C</u> G TTT				
One base mismatch-p53	TTC CTC TGT GCG CC <u>A</u> GTC TCT CCT				
Three base mismatch-p53	TTC CTC TGT <u>A</u> CG CC <u>A</u> GT <u>A</u> TCT CCT				
Radom sequence DNA	ACA CAC ACA CAC ACA CAC ACA CAC ACA CAC ACA CAC ACA CAC ACA CAC AC				

Table S1. DNA or RNA sequences used in this work

Figure S1. Optimization of the ferrocyanide concentration for amplification of the luminol

Figure S2. The concentration-dependent scavenging of singlet oxygen by tryptophan, β carotene, and NaN₃.

Figure S3. Absorption profiles of PB + K_4 Fe(CN)₆ before and after green LED irradiation.

Figure S4. Time courses of the CL profiles from the luminol-singlet oxygen- $K_4Fe(CN)_6$ reaction and the luminol- $K_3Fe(CN)_6$ reaction.

 $Conversion \ rate \ (K4Fe(CN)6) = \frac{[K3Fe(CN)6](photo - generated)}{irradation \ time(min)}$

The concentration of the generated ferricyanide was derived from the CL intensity of PMCL, based on the linear relationship between the CL intensity and the concentration of K_4 Fe(CN)₆. The conversion rate was thus calculated according to the above equation (photo irradiation time of 30 min).

Figure S5. Optimization of the irradiation time for PMCL sensing.

Figure S6. Comparison of the different dsDNA-staining dyes for PMCL. Experimental conditions: SG, 1.0 X; PG, 10 X ; EB, 19.6 μ M; K4[Fe(CN)6], 25 μ M; luminol, 1.0 mM; and luminol pH, 11.5.

Figure S7. Optimization of the SG concentration for photosensitization.

Figure S8. Investigation of pH on luminol CL reaction and PMCL performance. Experimental conditions: SG, 1.0 X; luminol, 1.0 mM.

Figure S9. Reproducibility evaluation of the BRCA1 gene assay. Experimental conditions: BRCA1, 2.0 nM; CS-BRCA1, 5.0 nM; SG, $1.0 \times$; K₄Fe(CN)₆, 25 µM; luminol, 1.0 mM.

Figure S10. Specificity investigation of PMCL sensing of BRCA1 gene. Experimental conditions: BRCA1 gene, 2.0 nM; probe DNA, 5.0 nM; Other DNA, 2.0 nM; SG, 1.0 \times ; K₄[Fe(CN)₆], 25 μ M; luminol, 1.0 mM.

Figure S11. (A) The CL response of PMCL sensing system with the increase of p53 gene; and (B) Specificity investigation of PMCL sensing of p53 gene Experimental conditions: SG, 1.0 \times ; K₄[Fe(CN)₆], 25 µM; luminol, 1.0 mM; and luminol pH, 11.5.

Figure S12. The CL response of PMCL sensing system with the increase of BRCAII gene. Experimental conditions: SG, 1.0 \times ; K₄[Fe(CN)₆], 25 µM; luminol, 1.0 mM; and luminol pH, 11.5.

Figure S13. Potential interferences from endogenous photosensitizers on the PMCL performance.

	D	1.00	T 1 1/m		LOD	
strategy ^a	Detection	Amplificati	Label/Tag	dynamic range	LOD	Ref
	Method	on				
dsDNA-SG/	CL	-	-	5.0 pM-5.0 nM	1.5 pM	This work
$K_4[Fe(CN)_6]$					(0.45 fmol)	
dsDNA/SG	Fluorescence	-	-	400 pM-5 nM	150 pM	This work
Split DNAzyme	CL	-	-	100 pM-5 nM	33 pM	This work
Split DNAzyme	Colorimetry		-	10-300 nM	NM	1
Split DNAzyme	colorimetry		-	1-100 nM	NM	2
Caged DNAzyme	colorimetry		-	200 nM-4.3µM	NM	3
GQDs/dsDNA/	fluorescence		-	6.7-46 nM	75 pM	4
MBs/HRP	CL/ CL		HRP	0.3-300 pM	0.10 pM	5
CHA/DNAzyme	Imaging CL	СНА	-	0.25-25 nM	0.30 fmol	6

Table S2 Comparison with other optical sensing methods for determination of DNA

CHA/GO/AuNPs/ TMB	Colorimetry	СНА	-	0.1 -10 nM	57.4 pM	7
HCR/ AuNPs	Colorimetry	HCR	-	0.05-6 nM	50 pM	8
CHA/GO/FAM	fluorescence	CHA	FAM	0.4-5 nM	0.20 nM	9
					(0.1nmol)	
CHA/ molecular	fluorescence	CHA	FAM,	1-50 nM	10 pM	10
beacon			DABCYL		(5 fmol)	
RCA/ molecular	fluorescence	RCA	FAM.	0.1-40 nM	1 pM	11
beacon			DABCYL			
HCR/AuNPs	Colorimetry	HCR	AuNps	-	0.5 nM	12
RCA/DNAzyme	Colorimetry	RCA	-	1pM-5 nM	1 pM	13

aAbbreviations: LOD = limit of detection; NM = not measured; GO = graphene oxide; GQDs = graphene quantum

dots; CHA = catalyzed hairpin assembly; FAM = fluorescein; MB = magnetic bead; HRP = Horseradish peroxidase.

1. Li, T.; Dong, S.; Wang, E., Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. *Chemical Communications* **2007**, (41), 4209.

2. Deng, M.; Zhang, D.; Zhou, Y.; Zhou, X., Highly Effective Colorimetric and Visual Detection of Nucleic Acids Using an Asymmetrically Split Peroxidase DNAzyme. *Journal of the American Chemical Society* **2008**, *130* (39), 13095-13102.

3. Xiao, Y.; Pavlov, V.; Niazov, T.; Dishon, A.; Kotler, M.; Willner, I., Catalytic Beacons for the Detection of DNA and Telomerase Activity. *Journal of the American Chemical Society* **2004**, *126* (24), 7430-7431.

4. Qian, Z. S.; Shan, X. Y.; Chai, L. J.; Ma, J. J.; Chen, J. R.; Feng, H., A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. *Nanoscale* **2014**, *6* (11), 5671-4.

5. Li, H.; He, Z., Magnetic bead-based DNA hybridization assay with chemiluminescence and chemiluminescent imaging detection. *Analyst* **2009**, *134* (4), 800-804.

6. Xu, H.; Wu, Q.; Shen, H., A DNAzyme sensor based on target-catalyzed hairpin assembly for enzyme-free and non-label single nucleotide polymorphism genotyping. *Talanta* **2017**, *167*, 630-637.

7. Chen, C.; Li, N.; Lan, J.; Ji, X.; He, Z., A label-free colorimetric platform for DNA via targetcatalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids. *Anal Chim Acta* **2016**, *902*, 154-159.

8. Liu, P.; Yang, X.; Sun, S.; Wang, Q.; Wang, K.; Huang, J.; Liu, J.; He, L., Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. *Anal Chem* **2013**, *85* (16), 7689-7695.

9. Zhang, Z.; Liu, Y.; Ji, X.; Xiang, X.; He, Z., A graphene oxide-based enzyme-free signal amplification platform for homogeneous DNA detection. *Analyst* **2014**, *139* (19), 4806-9.

10. Huang, J.; Su, X.; Li, Z., Enzyme-free and amplified fluorescence DNA detection using bimolecular beacons. *Anal Chem* **2012**, *84* (14), 5939-43.

11. Xu, H.; Xue, C.; Zhang, R.; Chen, Y.; Li, F.; Shen, Z.; Jia, L.; Wu, Z.-S., Exponential rolling

circle amplification and its sensing application for highly sensitive DNA detection of tumor suppressor gene. *Sensors and Actuators B: Chemical* **2017**, *243*, 1240-1247.

12. Ma, C.; Wang, W.; Mulchandani, A.; Shi, C., A simple colorimetric DNA detection by targetinduced hybridization chain reaction for isothermal signal amplification. *Anal Biochem* **2014**, *457*, 19-23.

13. Tian, Y.; He, Y.; Mao, C., Cascade signal amplification for DNA detection. *Chembiochem* **2006**, *7* (12), 1862-1864.