"Intelligent" Pt Catalysts Studied on High-Surface-Area CaTiO₃ Films

Chao Lin^{*a*}, Alexandre C. Foucher^{*b*}, Yichen Ji^{*a*}, Christopher D. Curran^{*c*}, Eric A. Stach^{*b*}, Steven McIntosh^{*c*} & Raymond J. Gorte^{*a*,*}.

^a Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 34th
Street, Philadelphia, PA 19104, United States
^b Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia,

PA 19104, United States

^c Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, United States.

Figure S1. Steady-state, differential reaction rates for CO oxidation with 25 Torr of CO and 12.5 Torr O_2 for Pt/CaTiO₃/MgAl₂O₄. The rates were compared after the following pretreatment conditions: (white) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 773 K using 10% H₂ in He; (grey) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 973 K using 10% H₂ in He; (black) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 973 K using 10% H₂ in He; (black) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 973 K using 10% H₂ in He; (black) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 973 K using 10% H₂ in He; (black) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 973 K using 10% H₂ in He; (black) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹ at 1073 K, followed by one-hour reduction at 1073 K using 10% H₂ in He.

Figure S2. Steady-state, differential reaction rates for CO oxidation with 25 Torr of CO and 12.5 Torr O₂ for (a) Pt/CaO/MgAl₂O₄ and (b) Pt/TiO₂/MgAl₂O₄. The rates were compared for after following pretreatment conditions: (Δ) sample in its pristine state (573K calcination after Pt deposition); (\bullet) Five high-temperature redox cycles, followed by an oxidation half cycle (two-hour oxidation in 10% O₂ in He at a flow rate of 100 mL min⁻¹, followed by one-hour reduction at 773 K using 10% H₂ in He); (\bullet) Five high-temperature redox cycles, followed by a reduction half cycle (one-hour reduction at 1073 K using 10% H₂ in He); (\bullet) Five high-temperature redox cycles, followed by a reduction half cycle (one-hour reduction at 1073 K using 10% H₂ in He).

Figure S3. Steady-state, differential reaction rates for CO oxidation with 25 Torr of CO and 12.5 Torr O_2 for Pt/0.5 nm CaTiO₃/MgAl₂O₄ after redox cycling. The rates were compared for after following pretreatment conditions: (•) two-hour oxidation in 10% O_2 in He at a flow rate of 100 mL min⁻¹, followed by one-hour reduction at 773 K using 10% H₂ in He; (•) one-hour reduction at 1073 K using 10% H₂ in He. Black symbols denote the first oxidation–reduction cycle, while red symbols represent the fifth cycle.

Figure S4. Light-off profiles for toluene hydrogenation over $Pt/CaTiO_3/MgAl_2O_4$ after five redox cycles with the final treatment being (gold) oxidation and (black) reduction.

Figure S5. STEM result with SAED pattern for $Pt/CaTiO_3/MgAl_2O_4$, after five 1073-K redox cycles, with the final step being reduction.

Figure S6. STEM result for $Pd/CaTiO_3/MgAl_2O_4$, after five 1073-K redox cycles, with the final step being reduction.

Sample	MgAl ₂ O ₄	CaO- MgAl ₂ O ₄	TiO ₂ - MgAl ₂ O ₄	CaTiO ₃ - MgAl ₂ O ₄
BET surface area (m ² /g)	125	63	95	50

Table S1. BET surface area for various samples after 1073 K calcination