SUPPORTING INFORMATION

Mössbauerite as Iron-only Layered Oxyhydroxide Catalyst for WO₃ Photoanodes

Michael Ertl^{†,a}, Zili Ma^{‡,a}, Thomas Thersleff[§], Pengbo Lyu[⊥], Sven Huettner[∥], Petr Nachtigall[⊥], Josef Breu^{†,*}, and Adam Slabon^{§,*}

[†]Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95440, Germany

[‡]Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany

^{II}Organic and Hybrid Electronics, University of Bayreuth, Universitätsstraße 30, D-95440, Germany [⊥]Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic

[§]Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden

^aM.E. and Z.M. contributed equally.

Table of Content

Figure S1. Powder X-ray diffraction data of WO₃.

Figure S2. Open-circuit photovoltage of WO₃ and WO₃/Mössbauerite photoanodes.

Figure S3. LSV at a scan rate of 10 mV s⁻¹ under sequentially interrupted backlight AM 1.5G illumination at pH 7 with stepwise addition of mössbauerite.

Figure S4. CA at 1.23 V vs. RHE and LSV at 10 mV s⁻¹ of heterojunction photoanodes under AM 1.5G illumination in 0.1M Na₂SO₄ (pH 7) with WO₃ synthesized according to ref¹.

Figure S5. Photoelectrochemical impedance spectra of the WO_3 photoanode compared with the heterojunction $WO_3/M\ddot{o}ssbauerite$ photoanode.

Figure S6. CA at 1.23 V vs. RHE of bare mössbauerite under sequentially interrupted AM 1.5G illumination in 0.1M Na₂SO₄ (pH 7).

References

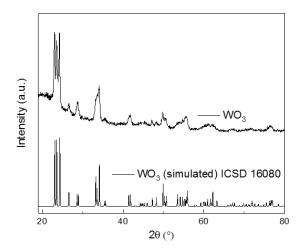
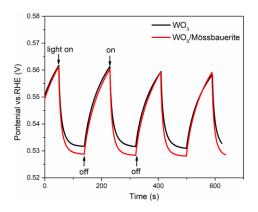
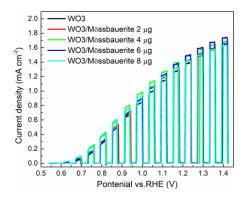
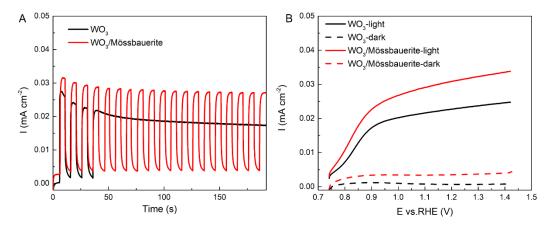
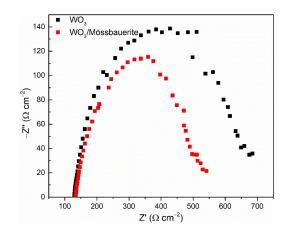


Figure S1. Powder X-ray diffraction data of WO₃.


Figure S2. Open-circuit photovoltage of WO₃ and WO₃/Mössbauerite photoanodes upon light on and light off.

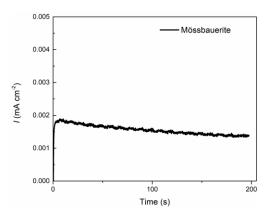

Figure S3. LSV at a scan rate of 10 mV s⁻¹ under sequentially interrupted backlight AM 1.5G illumination at pH 7 with stepwise addition of mössbauerite.

Figure S4. CA at 1.23 V vs. RHE and LSV at 10 mV s⁻¹ of heterojunction photoanodes under AM 1.5G illumination in 0.1M Na_2SO_4 (pH 7) with WO₃ synthesized according to ref¹.

Figure S5. Photoelectrochemical impedance spectra of the WO₃ photoanode compared with the heterojunction WO₃/Mössbauerite photoanode. The EIS was measured at 1.0 V vs RHE in the ac. potential frequency range of 20 KHZ–0.2 Hz under AM 1.5G illumination.

Figure S6. CA at 1.23 V vs. RHE of bare mössbauerite under sequentially interrupted AM 1.5G illumination in 0.1M Na₂SO₄ (pH 7).

References

(1) Davi, M.; Ogutu, G.; Schrader, F.; Rokicinska, A.; Kustrowski, P.; Slabon, A. Enhancing Photoelectrochemical Water Oxidation Efficiency of WO_3/α -Fe₂O₃ Heterojunction Photoanodes by Surface Functionalization with CoPd Nanocrystals. *Eur. J. Inorg. Chem.* **2017**, 2017, 4267–4274.