Electronic Supplementary Information (ESI)

Chemical Effect of Halide Ligands on the Electromechanical Properties of Ag Nanocrystal Thin Films for Wearable Sensors

Junhyuk Ahn, ^{a1} Sanghyun jeon, ^a Woo Seok Lee, ^a Ho Kun Woo, ^a Donggyu Kim, ^b Junsung Bang, ^a and Soong Ju Oh*^a

a. Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul,02841, Republic of Korea.

b. Department of Semiconductor Systems Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea. email: * sjoh1982@korea.ac.kr

Ag NCs treated with	TBAC (Cl ⁻)	TBAB (Br ⁻)	TBAI (I ⁻)
Silver (At%)	9.67	14.46	9.41
Halide (At%)	1	1.71	1.27
Halide At% / Silver At%	0.1	0.12	0.13
Table S1 Atomic ratios of halides and Ag.			
TBAI-treated Ag NCs	60 s	30 s	10 s
Ag (wt%)	27.53	31.69	29.83
I (wt%)	4.39	4.73	4.88
lodine wt% / Silver wt%	0.16	0.15	0.16

Table S2 Ratios of weight percentages of halides and Ag time corresponding to the substitution time

 $Figure\ S1.\ EDS\ profiles\ of\ halide-ligand-treated\ Ag\ NC\ thin\ films:\ I\ (red),\ Br\ (blue),\ and\ Cl\ (green).$

Figure S2. FTIR spectra of TBAC-treated (left), TBAB-treated (middle), and TBAI-treated (right) Ag NC thin films.

Figure S3. Ag NCs treated with TBAC for (a) 5 s and (b) 5 m.

Figure S4. Graph of change in resistivity depending on change in interparticle distance

Figure S5. (a) FTIR and (b) UV-Vis absorption spectra; inset is comparison between as-synthesized peak (the highest, black line) and TBAI-treated Ag NC thin films peaks, and (c) XRD patterns of Ag NC thin films treated with TBAI for different times.

Figure S6. I–V curve of TBAI-treated Ag NC thin films under 0% and 0.8 % strain.

Figure S7. TEM images of TBAI-treated Ag NCs for (a) 5 s and (b) 60 s. (c) XRD spectra of TBAI-treated Ag NCs for 5 s (red line) and 6 s (green line).