Supporting Information

Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes

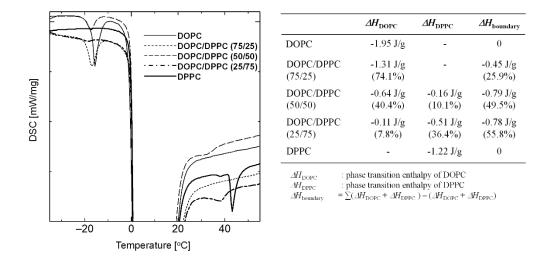
Authors

Tham Thi Bui, Keishi Suga, Hiroshi Umakoshi

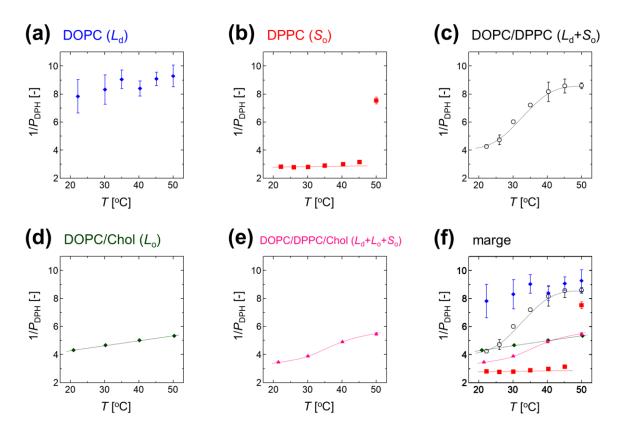
Affiliation

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Keywords:


Ergosterol; phase diagram; membrane fluidity; membrane polarity; Langmuir monolayer; ordered phase.

Differential scanning calorimetry analysis.


The phase transitions of DOPC/DPPC liposomes were revealed by differential scanning calorimetry (DSC) analysis (**Figure S1**). It was found that the DPPC liposome indicated a phase transition temperature (T_m) at 41 °C. The enthalpy (Δ H) for DOPC and DPPC were calculated (Table). In the case of liposome mixture ((1) DOPC liposome + DPPC liposome), the Δ H values showed a liner relationship with DPPC concentration. In contrast, the DOPC/DPPC binary mixtures (2) showed the decreased Δ H values lower than those of liposome mixtures. It is therefore suggested that DPPC molecules are not fully in solid ordered (S_o) phases.

Tuble of Thuse duilshing of DTTC [Real hiot]					
	DOPC/DPPC	$\Delta H_{\text{DOPC+DPPC}}(1)$	$\Delta H_{\text{DOPC/DPPC}}$ (2)	(2) - (1)	
	10/0	0.00	0.00	0.00	
	7/3	2.54	0.00	-2.54	
	5/5	4.92	0.49	-4.43	
	3/7	5.42	3.55	-1.87	
	0/10	7.38	7.38	0.00	

Table S1 Phase transition enthalpy of DPPC [kcal/mol]

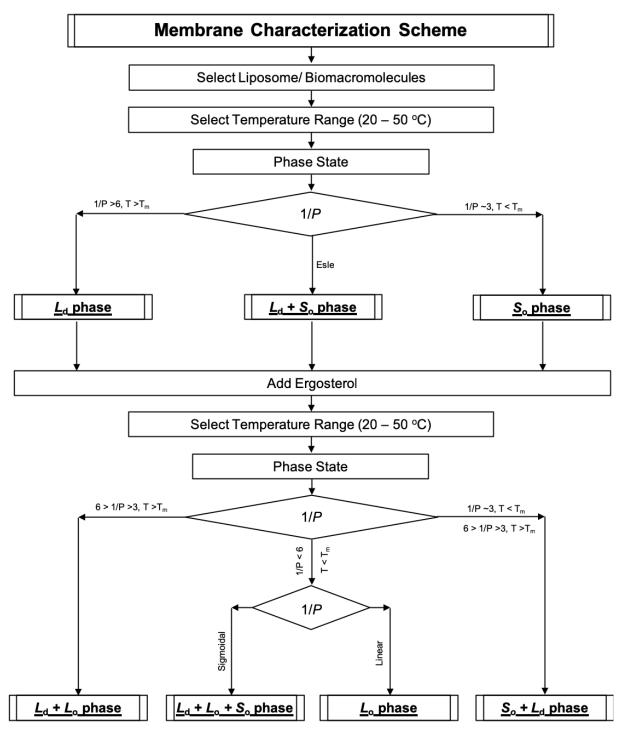


Figure S1 DSC analysis of DOPC/DPPC liposomes. Based on the obtained Δ H values, the fraction of total boundary lipid in DOPC/DPPC 3/1 (75/25), 1/1 (50/50) and 1/3 (25/75) were 25.9%, 49.5%, 55.8%, respectively. The mean boundary DPPC (i.e. not in S_0 state) in DOPC/DPPC 3/1, 1/1 and 1/3 was 25 mol%, 37.8 mol% and 36.0 mol%, respectively.

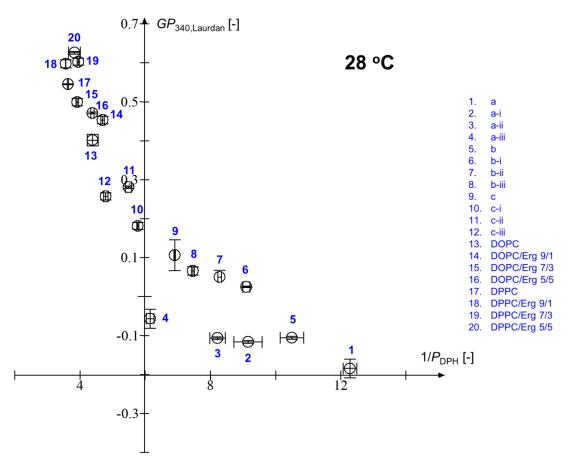

Estimation of phase state based on temperature-dependency of 1/P values.

Figure S2 Temperature dependency of liposomes with different phase states. (a) DOPC, L_d phase, $1/P_{DPH} > 6$. (b) DPPC, S_o phase, $1/P_{DPH} \sim 3$ (almost constant) below T_m ; $1/P_{DPH} > 6$ above T_m . (c) DOPC/DPPC 1/1 (no sterol), L_d+S_o phase, $T vs 1/P_{DPH}$ is sigmoidal. (d) DOPC/Chol 1/1, L_o , phase, $1/P_{DPH} < 6$, T vs 1/P is linear. (e) DOPC/DPPC/Chol 2/2/1, $L_d+L_o+S_o$ phase, $1/P_{DPH} < 6$, $T vs 1/P_{DPH}$ is sigmoidal. (f) merged graph. Data are cited from Suga et al. (Suga, K. et al., *Langmuir* 2013, 29, 4830-4838).

Figure S3 Scheme for constructing the phase diagram for DOPC/DPPC/Erg ternary mixtures based on membrane fluidity (1/ P_{DPH}) and the dependence on temperatures. In the absence of Erg, the phase states of the pure or mixed phospholipid membranes was analyzed. When $T < T_{\text{m}}$ and $1/P_{\text{DPH}} \sim 3$, it indicated the S_0 phase membrane, and when temperatures increasing over T_{m} , and $1/P_{\text{DPH}} > 6$, this reflected the L_d phase. If not, membrane phase was $L_d + S_0$ phase. The addition of Erg can contribute to the membrane phases. For example, the presence of Erg in S_0 resulted in the $1/P_{\text{DPH}} < 6$, it indicated the mixed phase of S_0+L_0 phase. Furthermore, membrane will be L_0 phase, when $1/P_{\text{DPH}} < 6$, T vs $1/P_{\text{DPH}}$ is linear. While, $1/P_{\text{DPH}} < 6$, T vs $1/P_{\text{DPH}}$ is sigmoidal, the membranes in the $L_d + S_0 + L_0$ phases. Otherwise, $L_d + L_0$ phase.

Cartesian diagram analysis of DOPC/DPPC/Erg ternary lipid mixtures.

Figure S4 Cartesian diagram for DOPC/DPPC/Erg ternary mixtures at 28 °C, based on membrane fluidity $(1/P_{DPH})$ and membrane polarity $(GP_{340,Laurdan})$. When the liposome membrane becomes polar $(GP_{340,Laurdan} \text{ decrease})$, its fluidity increases $(1/P_{DPH} \text{ increase})$. The membranes showing high fluidity $(1/P_{DPH} > 6)$ and in hydrophilic $(GP_{340,Laurdan} < 0)$ are estimated as liquid-disordered phase (L_d) . For details of Cartesian diagram analysis, see following reports (Suga, K., et al., *Langmuir* **2013**, *29*, 1899-1907; Suga, K. et al., *Langmuir* **2013**, *29*, 4830-4838; Bui, T. T. et al., *Langmuir* **2016**, *32*, 6176-6184).