Supporting Information

for
Electrochemical detection of gallic acid-capped gold nanoparticles using multi-walled carbon nanotube-reduced graphene oxide nanocomposite electrode

Hashwin V.S. Ganesh, Bhargav R. Patel, Hamid Fini, Ari M. Chow, Kagan Kerman*

Department of Physical and Environmental Sciences, University of Toronto Scarborough,

1265 Military Trail, Toronto, ON, M1C 1A4, Canada

* E-mail: kagan.kerman@utoronto.ca Tel: +1 4162877249

TABLE OF CONTENTS

Gallic acid-capped Au nanoparticle (GA-AuNP) colloidal solutions S1
Plot of cathodic peak potential vs $\mathbf{p H} \&$ plot of cathodic peak current vs $\mathbf{p H}$. S2
Differential pulse voltammograms of citrate-capped AuNPs (alone) and gallic acid (alone) and blank PBS at a bare electrode. S3A
Differential pulse voltammograms of GA-AuNPs at bare and nanocomposite-modified electrodes S3B
Differential pulse voltammograms of GA-AuNPs and GA (alone) at nanocomposite- modified electrodes. S4
Equivalent circuit elements following fitting of EIS data obtained from bare GCEs and modified electrodes as shown in Fig. 5 Table S1
Bode-Bode plots of the modified electrodes. S5
Differential pulse voltammograms for repeatability studies S6

Figure S1 - Photograph showing the colloidal solutions of GA-AuNPs synthesized using varying concentrations of $\mathrm{HAuCl}_{4} .3 \mathrm{H}_{2} \mathrm{O}$ (samples a-f), a) $167 \mu \mathrm{M}$ b) $250 \mu \mathrm{M} \mathrm{c)} 333 \mu \mathrm{M} \mathrm{d}$) $375 \mu \mathrm{M} \mathrm{e}$) 500 $\mu \mathrm{M}$ f) $537 \mu \mathrm{M}$ during reduction reaction with GA. Colloidal solutions in various colours were obtained depending on the size of the GA-AuNPs produced during the synthesis reaction.

Figure S2A. Plot of cathodic peak potential vs pH for the detection of GA-AuNPs (85 pM) at MWCNT-rGO-GCE. DPV measurements were performed in 0.1 M PBS at an amplitude of 25 mV and a step potential of 5 mV .

Figure S2B. Plot of cathodic peak current vs pH for the detection of GA-AuNPs (85 pM) at MWCNT-rGO-GCE. DPV measurements were performed in 0.1 M PBS at an amplitude of 25 mV and a step potential of 5 mV .

Figure S3A. Differential pulse voltammograms of 85 pM of citrate-AuNPs (green trace) and 300 $\mu \mathrm{M}$ gallic acid (pink trace) at bare GCE. DPV measurements were performed in $0.1 \mathrm{M} \mathrm{PBS}(\mathrm{pH}$ 5) at an amplitude of 25 mV and a step potential of 5 mV from 0.5 V to $-0.3 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$.

Figure S3B. Differential pulse voltammograms of 85 pM GA-AuNPs at bare GCE (blue) and MWCNT-rGO modified GCE (orange). DPV measurements were performed in $0.1 \mathrm{M} \mathrm{PBS}(\mathrm{pH} 5)$ at an amplitude of 25 mV and a step potential of 5 mV from 0.5 V to $-0.3 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$.

Figure S4. Differential pulse voltammograms of 85 pM GA-AuNPs (orange trace), 85 nM gallic acid (pink trace) and 85 pM citrate-AuNPs (green trace) at MWCNT-rGO modified GCE. DPV Measurements were carried out in $0.1 \mathrm{M} \mathrm{PBS}(\mathrm{pH} 5)$ at an amplitude of 25 mV and a step potential of 5 mV from 0.4 V to 0.2 V (vs. $\mathrm{Ag} / \mathrm{AgCl})$.

Table S1. Equivalent circuit elements following fitting of EIS data obtained from bare GCEs and modified electrodes as shown in Fig. 5.

	\mathbf{R} $(\boldsymbol{\Omega})$	$\mathbf{R 1}$ $(\boldsymbol{\Omega})$	$\mathbf{R 2}$ $(\mathbf{\Omega})$	$\mathbf{Q}_{\mathbf{d}}$ $\left(\boldsymbol{\mu} \mathbf{M h o}^{*} \mathbf{s}^{\mathbf{N}}\right)$	\mathbf{N}	$\mathbf{Q 1}$ $\left(\boldsymbol{\mu} \mathbf{M h o}{ }^{\mathbf{N}} \mathbf{N}\right)$	\mathbf{N}	$\mathbf{Q 2}$ $\left(\boldsymbol{\mu} \mathbf{M h o}^{*} \mathbf{s}^{\mathbf{N}}\right)$	\mathbf{N}
Bare $\mathbf{G C E}$	158	573	n.d.	10.5	0.696	42.7	0.407	n.d.	n.d.
rGO	119	24600	1720	8.16	0.705	635	1	60.5	0.784
MWCNT	121	10800	2550	5.36	0.782	28.9	0.539	9.09	1.03
MWCNT +rGO	108	51.8	n.d.	111	0.921	130	0.692	n.d.	n.d.

Figure S5. Bode-Bode plots of A) Bare GCE, B) rGO-modified GCE, C) MWCNT-modified GCE and D) MWCNT-rGO-modified GCE. Inset shows the plot of C' vs C" for each of the electrode modifications. Equivalent circuits for each electrode modification are provided in Figure. 5 in the main text.

Figure S6. Differential pulse voltammograms of MWCNT-rGO-modified GCEs in 0.1 M PBS (pH 5) for repetitive measurements $(\mathrm{n}=10)$ of a solution containing 164 pM GA-AuNPs.

