Supporting information

Synergistic Effect of Pseudo-Halide Thiocyanate Anion and Cesium

Cation on Realizing High-Performance Pinhole Free MA-Based Wide-

Band Gap Perovskites

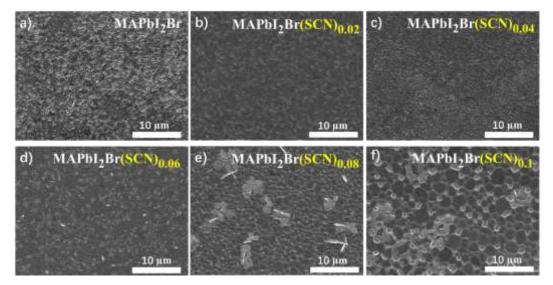
Yue-Min Xie, $^{\uparrow, \ddagger, \$}$ Xiuwen Xu, $^{\uparrow, \ddagger, \$}$ Chunqing Ma, ‡ Menglin Li, $^{\uparrow, \ddagger, \$}$ Yuhui Ma $^{\uparrow, \ddagger, \$}$ Chun-

Sing Lee,‡ and Sai-Wing Tsang *,†,‡,§

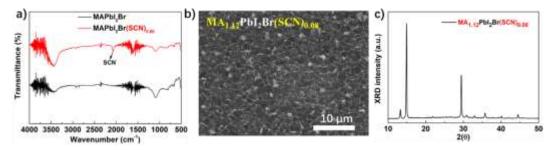
[†]Department of Materials Science and Engineering and [‡]Center of Super-Diamond and

Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong

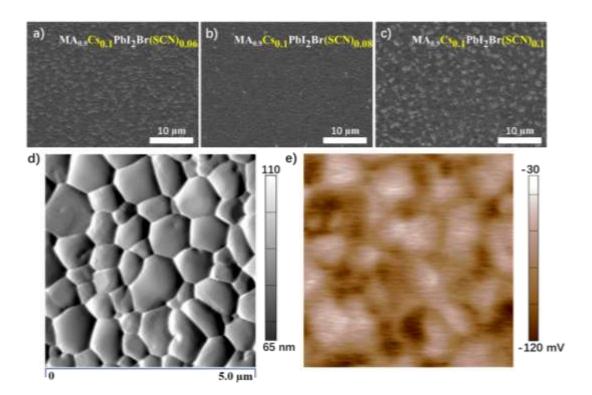
SAR, P. R. China

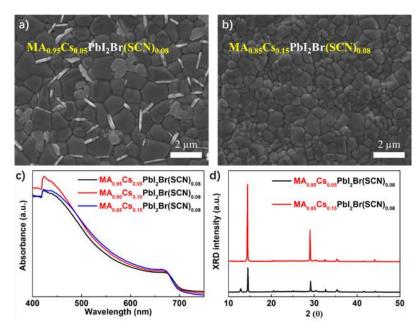

§City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R.

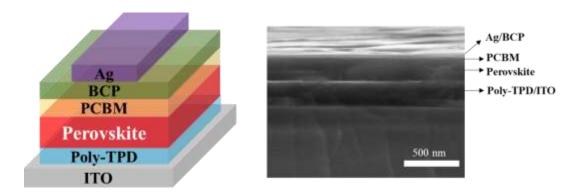
China

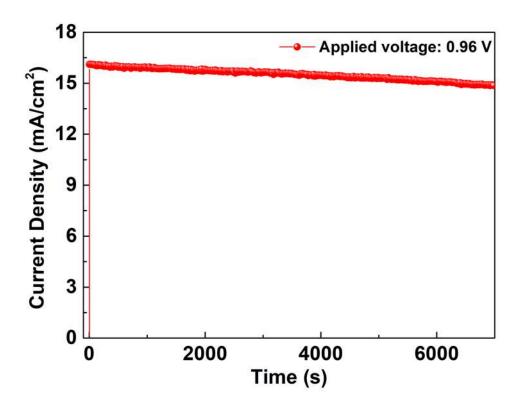

Corresponding Author

* E-mail: saitsang@cityu.edu.hk


S-1


Figure S1. Large-scale SEM images of MAPbI₂Br perovskites with the Pb(SCN)₂ additive ratio of a) 0, b) 1%, c) 2%, d) 3%, e) 4% and f) 5%, respectively.


Figure S2. a) FTIR spectra of MAPbI₂Br and MAPbI₂Br(SCN)_{0.08}, respectively. b-c) SEM and XRD results of film prepared with precursor solution of $MA_{1.12}PbI_2Br(SCN)_{0.08}$.


Figure S3. a-c) Large-scale SEM images of perovskite film prepared with precursor solution of $MA_{0.9}Cs_{0.1}PbI_2Br(SCN)_{0.06}$, $MA_{0.9}Cs_{0.1}PbI_2Br(SCN)_{0.08}$ and $MA_{0.9}Cs_{0.1}PbI_2Br(SCN)_{0.1}$, respectively. d) AFM topography and e) the contact potential difference (CPD) maps of film $MAPbI_2Br(SCN)_{0.08}$.

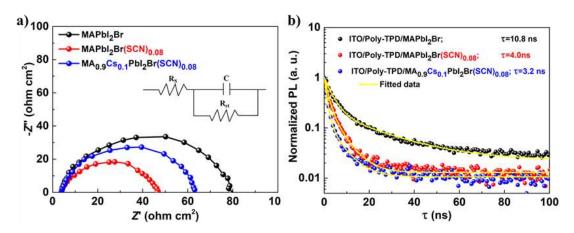

Figure S4. SEM images of perovskite films prepared with precursor solution of a) $MA_{0.95}Cs_{0.05}PbI_2Br(SCN)_{0.08}$ and b) $MA_{0.85}Cs_{0.15}PbI_2Br(SCN)_{0.08}$, respectively. c-d) UV-Vis absorption results of perovskite films prepared with precursor solution of $MA_{0.95}Cs_{0.05}PbI_2Br(SCN)_{0.08}$, $MA_{0.90}Cs_{0.10}PbI_2Br(SCN)_{0.08}$ and $MA_{0.85}Cs_{0.15}PbI_2Br(SCN)_{0.08}$, respectively. d) XRD results of the films prepared with precursor solution of $MA_{0.95}Cs_{0.05}PbI_2Br(SCN)_{0.08}$ and $MA_{0.85}Cs_{0.15}PbI_2Br(SCN)_{0.08}$, respectively.

Figure S5. Device structure and corresponding cross-section SEM image of the perovskite solar cells in this work.

Figure S6. Steady-state current density (J_{sc}) under AM1.5 illumination at the applied voltage corresponding to the maximum power point (0.96 V) tested under ambient atmosphere without encapsulation.

Figure S7. EIS spectra of $MA_{0.9}CS_{0.1}PbI_2Br(SCN)_{0.08}$, $MA_{0.9}CS_{0.1}PbI_2Br(SCN)_{0.08}$ and $MA_{0.9}CS_{0.1}PbI_2Br(SCN)_{0.08}$ based PVSCs measured at open circuit condition (V = 1.04, 1.12 and 1.15 V, respectively).