A New Procedure to Calculate All Equilibrium Constants in Flavylium Compounds: Application to the Co-Pigmentation of Anthocyanins.

Johan Mendoza ${ }^{\dagger}$, Nuno Basílio ${ }^{\dagger}$, Victor de Freitas ${ }^{\ddagger}$ and Fernando Pina ${ }^{\dagger *}$

${ }^{\dagger}$ LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, fp@fct.unl.pt.
${ }^{\ddagger}$ LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, vfreitas@fc.up.pt

Table of Contents

Appendix 1A S2
Appendix 1B S8
Appendix $2 \quad$ S11

Appendix 1A

The complex multistate simplified as a triprotic acid.
Let us consider the extension of the anthocyanins and related compounds equilibrium to the mono and di-ionized species. The extension to more acid base equilibria is straightforward

First global acid base equilibrium
$\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{A}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{a}} \quad$ proton transfer
$\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{B}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{h}} \quad$ hydration
$\mathbf{B} \rightleftharpoons \mathbf{C c} \quad K_{\mathrm{t}} \quad$ tautomerization
$\mathrm{Cc} \rightleftharpoons \mathrm{Ct}$
$K_{\mathrm{i}} \quad$ isomerization

Second global acid base equilibrium
$\mathbf{A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{A}^{-}}$proton transfer
$\mathbf{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{B}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{B} / \mathrm{B}^{-}} \quad$ proton transfer
$\mathbf{C c}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cc}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{Cc} / \mathrm{Cc}}{ }^{-}$proton transfer
$\mathbf{C t}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C t}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{Ct} / \mathrm{Ct}} \quad$ proton transfer

Third global acid base equilibrium
$\mathbf{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{A}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{A}^{-} / \mathrm{A}^{2-}}$ proton transfer
$\mathbf{B}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{B}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{B}^{-} / \mathrm{B}^{2-}}$ proton transfer
$\mathbf{C c}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C c}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{Cc}^{-} / \mathrm{Cc}^{2-}}$ proton transfer
$\mathbf{C t}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C t}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{Ct}^{-} / \mathrm{Ct}^{2-}}$ proton transfer
Inspection of the multistate of reactions shows that except for the first global acid base equilibrium that generates the species A (also obtained by proton transfer), B, Cc and Ct , the following global equilibria correspond to the generation of the deprotonated forms of the former.

The mole fractions of all the species of the multistate are straightforwardly calculated by a simple mass balance in function of the species AH^{+}, by using the equilibrium constants of eq.(1) to eq.(12)

The mass balance gives

$$
C_{0}=\left[A H^{+}\right]+[A]+[B]+[C c]+[C t]+\left[A^{-}\right]+\left[B^{-}\right]+\left[C c^{-}\right]+\left[C t^{-}\right]+\left[A^{2-}\right]+\left[B^{2-}\right]+\left[C c^{2-}\right]+\left[C t^{2-}\right]
$$

$$
\begin{aligned}
& C_{0}=\left[A H^{+}\right]\left(1+\frac{K_{a}}{\left[H^{+}\right]}+\frac{K_{h}}{\left[H^{+}\right]}+\frac{K_{h} K_{t}}{\left[H^{+}\right]}+\frac{K_{h} K_{t} K_{i}}{\left[H^{+}\right]}+\frac{K_{A / A} K_{a}}{\left[H^{+}\right]^{2}}+\frac{K_{B / B} K_{h}}{\left[H^{+}\right]^{2}}+\frac{K_{C c / C-} K_{h} K_{t}}{\left[H^{+}\right]^{2}}+\frac{K_{C U V C T} K_{h} K_{t} K_{i}}{\left[H^{+}\right]^{2}}+\right.
\end{aligned}
$$

From eq.(14) the mole fraction distribution of AH^{+}can be calculated, eq.(15)

$$
\begin{equation*}
X_{A H^{+}}=\frac{\left[A H^{+}\right]}{C_{0}}=\frac{\left[H^{+}\right]^{3}}{D} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& D=\left[H^{+}\right]^{3}+\left(K_{a}+K_{h}+K_{h} K_{t}+K_{h} K_{t} K_{i}\right)\left[H^{+}\right]^{2}+\left(K_{A / A} K_{a}+K_{B / B} K_{h}+K_{C l / C_{c}} K_{h} K_{t}+K_{C / / C t} K_{h} K_{t} K_{i}\right)\left[H^{+}\right]+
\end{aligned}
$$

By analogy with a tri-protic acid where $K^{\prime}{ }_{\mathrm{a}}, K^{\prime \prime}{ }_{\mathrm{a}}$ and $K^{\prime \prime \prime}{ }_{\mathrm{a}}$ are the first second and third acidity constants the mole fraction of the fully protonated form is given by eq.(16)

$$
\begin{equation*}
X_{A H^{+}}=\frac{\left[H^{+}\right]^{3}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K_{a}^{\prime} K^{\prime}{ }_{a}\left[H^{+}\right]+K_{a}^{\prime} K^{\prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}} \tag{16}
\end{equation*}
$$

With

$$
\begin{align*}
& K_{a}^{\prime}=K_{a}+K_{h}+K_{h} K_{t}+K_{h} K_{t} K_{i} \tag{17}\\
& K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}=K_{A / A^{-}} K_{a}+K_{B / B^{-}} K_{h}+K_{C c / C c^{c}} K_{h} K_{t}+K_{C t / C t^{\prime}} K_{h} K_{t} K_{i} \tag{18}\\
& K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}=K_{A^{\prime} / A^{2}} K_{A / A} K_{a}+K_{B^{-} / B^{2}} K_{B / B^{-}} K_{h}+K_{C c^{-} / / c^{2}-} K_{C c / C c^{c}} K_{h} K_{t}+ \\
& +K_{C_{t} / / t^{2}} K_{C t / C t^{-}} K_{h} K_{t} K \tag{19}
\end{align*}
$$

The complex equilibria from eq.(1) to eq.(12) can thus be summarized in eq.(20) to eq.(22).

$$
\begin{equation*}
\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{a}}^{\prime} \tag{20}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathbf{C B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{\mathrm{a}}^{\prime \prime} \\
\mathbf{C B}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{\mathrm{a}}^{\prime \prime \prime} \tag{22}
\end{array}
$$

where
$[\mathbf{C B}]=[\mathbf{A}]+[\mathbf{B}]+[\mathbf{C c}]+[\mathbf{C t}]$
$\left[\mathbf{C B}^{-}\right]=\left[\mathbf{A}^{-}\right]+\left[\mathbf{B}^{-}\right]+\left[\mathbf{C c}^{-}\right]+\left[\mathbf{C t}^{-}\right]$
$\left[\mathbf{C B}^{2-}\right]=\left[\mathbf{A}^{2-}\right]+\left[\mathbf{B}^{2-}\right]+\left[\mathbf{C c}^{2-}\right]+\left[\mathbf{C t}^{2-}\right]$
with K_{a} defined above by eq.(17) and $K^{\prime \prime}{ }_{\mathrm{a}}$ and $K^{\prime \prime \prime}{ }_{\mathrm{a}}$ by eq.(26) and eq.(27)
$K^{\prime \prime}{ }_{a}=\frac{K_{A / A} K_{a}+K_{B / B-} K_{h}+K_{C l / C c^{-}} K_{h} K_{t}+K_{C t / C t} K_{h} K_{t} K_{i}}{K^{\prime}{ }_{a}}$
$K^{\prime \prime \prime}{ }_{a}=\frac{K_{A^{-} / A^{2}} K_{A / A A^{-}} K_{a}+K_{B^{-} \mid B^{2}-} K_{B / B B^{-}} K_{h}+K_{C c^{-} / C c^{2}-} K_{C c / / C_{c}^{-}} K_{h} K_{t}+K_{C t^{t} / C t^{2}} K_{C t / C t^{-}} K_{h} K_{t} K}{K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}}$

The mole fraction of the remaining species is now easy to obtain form eq.(28) to eq.(39)

$$
\begin{equation*}
X_{A}=\frac{K_{a}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{3}+K_{a}^{\prime}\left[H^{+}\right]^{2}+K_{a}^{\prime} K_{a}^{\prime \prime}\left[H^{+}\right]+K_{a}^{\prime} K_{a}{ }_{a} K^{\prime \prime \prime}{ }_{a}} \tag{28}
\end{equation*}
$$

$X_{B}=\frac{K_{h}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{C c}=\frac{K_{h} K_{t}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{C t}=\frac{K_{h} K_{t} K_{i}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{3}+K_{a}^{\prime}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{A^{-}}=\frac{K_{a} K_{A / A^{-}}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{B^{-}}=\frac{K_{h} K_{B / B}{ }^{-}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{C c^{-}}=\frac{K_{h} K_{t} K_{C c / C c^{c}}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{C_{t}{ }^{-}}=\frac{K_{h} K_{t} K_{i} K_{C t / C_{t}}\left[H^{+}\right]}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{A^{2}}=\frac{K_{a} K_{A / A} K_{A^{-} / A^{2}}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{B^{2-}}=\frac{K_{h} K_{B / B B^{-}} K_{B^{-} / B^{2-}}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}}$
$X_{C c^{-2}}=\frac{K_{h} K_{t} K_{C c / / c^{c}} K_{C c^{-} / C c^{2-}}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime " \prime}{ }_{a}}$
$X_{C t^{2}}=\frac{K_{h} K_{t} K_{i} K_{C t / C^{-}} K_{C_{C} /\left(C^{2-}\right.}}{}\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}{ }^{\prime}$

On the other hand, eq.(20) to eq.(22) show that the system behaves as a triprotic acid with constants $K^{\prime}, K^{\prime}{ }^{\prime}{ }_{\mathrm{a}}$ and $K^{\prime}{ }^{\prime}{ }_{\mathrm{a}}$. The respective mole fractions are given by eq.(40) to eq.(43)

$$
\begin{align*}
& X_{A H+}=\frac{\left[H^{+}\right]^{3}}{D} \tag{40}\\
& D=\left[H^{+}\right]^{3}+K_{a}^{\prime}\left[H^{+}\right]^{2}+K_{a}^{\prime} K_{a}^{\prime \prime}\left[H^{+}\right]+K_{a}^{\prime} K_{a}^{\prime \prime} K_{a}^{\prime \prime \prime} \\
& X_{C B}=\frac{K_{a}^{\prime}\left[H^{+}\right]^{2}}{D} \tag{41}\\
& X_{C B-}=\frac{K_{a}^{\prime} K_{a}^{\prime \prime}\left[H^{+}\right]}{D} \tag{42}\\
& X_{C B 2-}=\frac{K_{a}^{\prime} K_{a}^{\prime \prime} K_{a}^{\prime \prime \prime}}{D} \tag{43}
\end{align*}
$$

Pseudo equilibrium
All equations above described can be applied at the pseudo-equilibrium. The pseudo equilibrium is reached when the isomerization constants is by far the slowest step of the kinetics towards the equilibrium.
$\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{\wedge}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K^{\wedge}{ }_{\mathrm{a}}$
$\mathbf{C B}^{\wedge}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{\wedge}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K^{\wedge}{ }_{a}$
$\mathbf{C B}^{\wedge}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{\wedge}{ }^{\wedge-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K^{\wedge \wedge}{ }_{\mathrm{a}}$

Where
$\left[\mathbf{C B}^{\wedge}\right]=[\mathbf{A}]+[\mathbf{B}]+[\mathbf{C c}]+[\mathbf{C t}]$
$\left[\mathbf{C B}^{\wedge}\right]=\left[\mathbf{A}^{-}\right]+\left[\mathbf{B}^{-}\right]+\left[\mathbf{C c}^{-}\right]+\left[\mathbf{C t}^{-}\right]$
$\left[\mathbf{C B}^{\wedge-}\right]=\left[\mathbf{A}^{2-}\right]+\left[\mathbf{B}^{2-}\right]+\left[\mathbf{C c}^{2-}\right]+\left[\mathbf{C t}^{2-}\right]$

The mole fractions of the pseudo equilibrium are given by the same expression of the equilibrium making $K_{\mathrm{i}}=0$
With
$K_{a}^{\wedge}=K_{a}+K_{h}+K_{h} K_{t}$
$K^{\wedge}{ }_{a} K^{\wedge}{ }_{a}=K_{A / A} K_{a}+K_{B / B}-K_{h}+K_{C c / / c^{c}} K_{h} K_{t}$
$K^{\wedge}{ }_{a}^{\wedge \wedge}{ }_{a} K^{\wedge \wedge}{ }_{a}=K_{A / / A^{2}} K_{A / A / A^{-}} K_{a}+K_{B^{-} / B^{2}-} K_{B / B^{-}} K_{h}+K_{C c^{-} / / C c^{2}} K_{C c / / c_{c}} K_{h} K_{t}$
and by consequence

$$
\begin{align*}
& K_{a}^{\wedge}=\frac{K_{A / A} K_{a}+K_{B / B} K_{h}+K_{C c / C c^{-}} K_{h} K_{t}}{K_{a}^{\wedge}} \tag{53}\\
& K_{a}^{\wedge \wedge}=\frac{K_{A^{-} / A^{-}} K_{A / A} K_{a}+K_{B^{-} / B^{-}-} K_{B / B B^{-}} K_{h}+K_{C c^{-} / C c^{2}} K_{C c / / c^{-}} K_{h} K_{t}}{K_{a}^{\wedge} K_{a}} \tag{54}
\end{align*}
$$

The mole fractions of the global triprotic acid at the pseudo-equilibrium is given by

$$
\begin{align*}
& X_{A H+}=\frac{\left[H^{+}\right]^{3}}{D} \tag{55}\\
& D=\left[H^{+}\right]^{3}+K_{a}^{\wedge}\left[H^{+}\right]^{2}+K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]+K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge} \\
& X_{C B^{\wedge}}=\frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D} \tag{56}
\end{align*}
$$

$$
\begin{align*}
& X_{C B^{\wedge-}}=\frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D} \tag{57}\\
& X_{C B^{\wedge 2-}}=\frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D} \tag{58}
\end{align*}
$$

Appendix 1B

In appendix 1 A it was shown that the system behaves at the equilibrium or pseudo equilibrium as a triprotic acid.

$$
\begin{align*}
& \mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}+\mathrm{H}_{3} \mathrm{O}^{+} \tag{1}\\
& \mathbf{C B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{a}}^{\prime} \tag{2}\\
& \mathbf{C B}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{a}^{\prime, \prime} \tag{3}\\
& X_{A H+}=\frac{\left[H^{+}\right]^{3}}{D} \tag{4}\\
& D=\left[H^{+}\right]^{3}+K_{a}^{\prime}\left[H^{+}\right]^{2}+K_{a}^{\prime} K_{a}^{\prime \prime}\left[H^{+}\right]+K_{a}^{\prime} K_{a}^{\prime \prime} K_{a}^{\prime \prime \prime} \\
& X_{C B}=\frac{K_{a}^{\prime}\left[H^{+}\right]^{2}}{D} \tag{5}\\
& X_{C B-}=\frac{K_{a}^{\prime} K_{a}^{\prime \prime}\left[H^{+}\right]}{D} \tag{6}\\
& X_{C B 2-}=\frac{K_{a}^{\prime} K_{a}^{\prime \prime} K_{a}^{\prime \prime \prime}}{D} \tag{7}
\end{align*}
$$

The same expressions can be used for the pseudo equilibrium making $K_{\mathrm{i}}=0$
As shown in the main text at the pseudo equilibrium (mutatis mutandis for the equilibrium) the normalized mole fraction distribution of the species A, B and Cc can be calculated trough the reverse pH jumps. Fig. S 1 shows a simulation of these mole fractions for several pH values. In other words, $\mathrm{CB}^{\wedge}, \mathrm{CB}^{\wedge}$ and $\mathrm{CB}^{\wedge 2-}$, can be decomposed in their components, Fig. S.1. This means that for example the mole fraction of CB, eq.(5) can be written as follows

$$
\begin{equation*}
X_{C B}=\frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}=a_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}+b_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}+c_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D} \tag{8}
\end{equation*}
$$

where a_{0}, b_{0} and c_{0} are the normalized mole fractions respectively of A, B and Cc
$a_{0}+b_{0}+c_{0}=1$
The same for CB^{\wedge} - and $\mathrm{CB}^{\wedge 2-}$.
$X_{C B^{\wedge}}=\frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}=a_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}+b_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}+c_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}$
$a_{1}+b_{1}+c_{1}=1$
$X_{C B^{\wedge} 2-}=\frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D}=a_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge \wedge} K_{a}^{\wedge \wedge}}{D}+b_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D}+c_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D}$
$a_{2}+b_{2}+c_{2}=1$
The normalized mole fractions of each species and the respective ionized forms can be written

$$
\begin{align*}
& X_{A}+X_{A-}+X_{A 2-}=a_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}+a_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}+a_{2} \frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D} \tag{14}\\
& X_{B}+X_{B-}+X_{B 2-}=b_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}+b_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}+b_{2} \frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}}{D} \tag{15}\\
& X_{C c}+X_{C C-}+X_{C c 2-}=c_{0} \frac{K_{a}^{\wedge}\left[H^{+}\right]^{2}}{D}+c_{1} \frac{K_{a}^{\wedge} K_{a}^{\wedge}\left[H^{+}\right]}{D}+c_{2} \frac{K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge}}{D} \tag{16}
\end{align*}
$$

The mole fractions calculated in Appendix 1can be re-written as follows

$$
\begin{align*}
& X_{A}+X_{A-}+X_{A 2-}=\frac{K_{a}\left[H^{+}\right]^{2}+K_{A / A-} K_{a}\left[H^{+}\right]+K_{A-/ A 2-} K_{A / A-} K_{a}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}} \tag{17}\\
& X_{B}+X_{B-}+X_{B 2-}=\frac{K_{h}\left[H^{+}\right]^{2}+K_{B / B-} K_{h}\left[H^{+}\right]+K_{B-B 2-} K_{B / B-} K_{h}}{\left[H^{+}\right]^{3}+K^{\prime}{ }_{a}\left[H^{+}\right]^{2}+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K^{\prime}{ }_{a} K^{\prime \prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}} \tag{18}\\
& X_{C c}+X_{C c-}+X_{C c 2-}=\frac{K_{h} K_{t}\left[H^{+}\right]^{2}+K_{C c / C c-} K_{h} K_{t}\left[H^{+}\right]+K_{C c / C c 2-} K_{C C / C c} K_{h} K_{t}}{\left[H^{+}\right]^{3}+K^{\prime}\left[H^{+}\right]^{2}+K_{a}^{\prime} K^{\prime \prime}{ }_{a}\left[H^{+}\right]+K_{a}^{\prime} K^{\prime}{ }_{a} K^{\prime \prime \prime}{ }_{a}} \tag{19}
\end{align*}
$$

Comparing eq.(14) to eq.(16) with eq.(17) to eq.(19)

$$
\begin{array}{lll}
K_{a}=a_{0} K_{a}^{\wedge} ; & K_{A / A-} K_{a}=a_{1} K_{a}^{\wedge} K_{a}^{\wedge} ; & K_{A-/ A 2-} K_{A / A-} K_{a}=a_{2} K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge} \\
K_{h}=b_{0} K_{a}^{\wedge} ; & K_{B / B-} K_{h}=b_{1} K_{a}^{\wedge} K_{a}^{\wedge} ; & K_{B-/ B 2-} K_{B / B-} K_{h}=b_{2} K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge} \\
K_{h} K_{t}=c_{0} K_{a}^{\wedge} ; & K_{C c / C C-} K_{h} K_{t}=c_{1} K_{a}^{\wedge} K_{a}^{\wedge} ; & K_{C c-/ C c 2-} K_{C c / C C-} K_{h} K_{t}=c_{2} K_{a}^{\wedge} K_{a}^{\wedge} K_{a}^{\wedge \wedge}
\end{array}
$$

This permits to calculate all equilibrium constants, since $K^{\wedge}, K^{\wedge}{ }_{a}$ and $K^{\wedge \wedge}{ }_{a}$ are calculated from the pseudo-equilibrated absorption spectra. At any wavelength the absorption as a function of pH exhibits 3 inflection points corresponding to the three $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$.

Figure S1. Simulation of the mole fraction distribution of the species A, B, Cc, Ct and their respective ionized forms obtained by reverse pH jumps. $\mathrm{p} K_{\mathrm{a}}=4.8 ; K_{\mathrm{h}}=1.4 \times 10^{-5} ; K_{\mathrm{t}}=0.88 ; K_{\mathrm{i}}=2 ; \mathrm{p} K_{\mathrm{A} / \mathrm{A}-}=7.1 ; \mathrm{p} K_{\mathrm{B} / \mathrm{B}-}$ $=6.9 ; \mathrm{p} K_{\mathrm{Cc} / \mathrm{Cc}_{-}}=7.4 ; \mathrm{p} K_{\mathrm{C} / / \mathrm{Ct}=}=6.7 ; \mathrm{p} K_{\mathrm{A}-/ \mathrm{A} 2}=8.3 ; \mathrm{p} K_{\mathrm{B}-\mathrm{B} 2}=10.0 ; \mathrm{p} K_{\mathrm{Cc}-/ \mathrm{Cc} 2}=8.4 ; \mathrm{p} K_{\mathrm{Ct} / \mathrm{Ct} 2}=9.0$.

Appendix 2

Considering the flavylium cation and the neutral species
$\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{A}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{B}+\mathrm{H}_{3} \mathrm{O}^{+}$
$K_{\mathrm{a}} \quad$ proton transfer
$K_{\mathrm{h}} \quad$ hydration
$\mathbf{B} \rightleftharpoons \mathbf{C c}$
$K_{\mathrm{t}} \quad$ tautomerization

This equation is reduced to

$$
\begin{array}{lll}
\mathbf{A H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C B}^{\wedge}+\mathrm{H}_{3} \mathrm{O}^{+} & K_{\mathrm{a}}^{\wedge} \quad \text { proton transfer } \\
{\left[\mathrm{CB}^{\wedge}\right]=[\mathrm{A}]+[\mathrm{B}]+[\mathrm{Cc}]} & & \\
K_{a}^{\wedge}=K_{a}+K_{h}+K_{h} K_{t} & & \tag{5}
\end{array}
$$

Considering the $1: 1$ complexation with neutral species
$\mathbf{A H}^{+}+\mathbf{C P} \rightleftharpoons \mathbf{A H}^{+} \mathbf{C P}$
$K_{\mathrm{AH}+\mathrm{CP}}$ complexation
$\mathbf{A}+\mathrm{CP} \rightleftharpoons \mathbf{A C P}$
$K_{\text {ACP }}$ complexation
$\mathbf{B}+\mathbf{C P} \rightleftharpoons \mathbf{B C P}$
$K_{\mathrm{BCP}} \quad$ complexation
$\mathbf{C c}+\mathrm{CP} \rightleftharpoons \mathbf{C c C P}$
$K_{\text {CcCP }}$ complexation

This complex set of equations can be reduced to eq.(4) and eq.(10)
$\mathbf{C B}^{\wedge}+\mathrm{CP} \rightleftharpoons \mathbf{C B} \mathbf{C P} \quad K_{\mathrm{CBCP}}$ complexation
$\left[\mathrm{CB}^{\wedge} \mathrm{CP}\right]=[\mathrm{ACP}]+[\mathrm{BCP}]+[\mathrm{CcCP}]$

$$
\begin{equation*}
K_{C B^{\wedge} C P}=\frac{\left[C B^{\wedge} C P\right]}{[C B][C P]}=\frac{[A C P]+[B C P]+[C c C P]}{[A][C P]+[B][C P]+[C c][C P]} \tag{11}
\end{equation*}
$$

Simplifying

$$
\begin{equation*}
K_{C B^{\wedge} C P}=\frac{\left[C B^{\wedge} C P\right]}{[C B][C P]}=\frac{\left(K_{A C P} K_{a}+K_{B C P} K_{h}+K_{C C C P} K_{h} K_{t}\right)}{K_{a}^{\wedge}} \tag{12}
\end{equation*}
$$

Considering the mono-ionized species, those that still have some importance in anthocyanins (the higher ionized species are not stable)
$\mathbf{A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{A} / \mathrm{A}^{-}} \quad$ proton transfer
$\mathbf{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{B}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{B} / \mathrm{B}-} \quad$ proton transfer
$\mathbf{C c}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{C c}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{Cc} / \mathrm{cc}-}$ proton transfer

Eq.(13) to eq.(15) are reduced to eq.(16)
$\mathbf{C B}^{\wedge}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CB}^{\wedge}-+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{\mathrm{CB}^{\wedge} / \mathrm{CB}^{\wedge}-} \quad$ proton transfer

This constant can be written as in eq.(17)

$$
\begin{equation*}
K_{C B^{\wedge} / C B^{\wedge}-}=\frac{\left(\left[A^{-}\right]+\left[B^{-}\right]+\left[C c^{-}\right]\right)\left[H^{+}\right]}{[C B]}=\frac{K_{A / A-} K_{a}+K_{B / B-} K_{h}+K_{C c / C C-} K_{h} K_{t}}{K_{a}^{\wedge}} \tag{17}
\end{equation*}
$$

Regarding the complexation of the ionized species
$\mathbf{A}^{-}+\mathbf{C P} \rightleftharpoons \mathbf{A}^{-} \mathbf{C P} \quad K_{\mathrm{ACP}} \quad$ complexation
$\mathbf{B}^{-}+\mathbf{C P} \rightleftharpoons \mathbf{B} \mathbf{C P} \quad K_{\mathrm{BCP}} \quad$ complexation
$\mathbf{C c}^{-}+\mathrm{CP} \rightleftharpoons \mathbf{C c} \mathbf{C P} \quad K_{\mathrm{CcCP}} \quad$ complexation

Can be reduced to

$$
\begin{align*}
& \mathbf{C B}^{-\wedge}+\mathrm{CP} \rightleftharpoons \mathrm{CB}^{\wedge} \mathbf{C P} \quad K_{\left(\mathrm{CB}^{\wedge}-\mathrm{CP}\right)} \tag{21}\\
& K_{\left(C B^{\wedge}-C P\right)}=\frac{\left[C B^{\wedge} C P\right]}{\left[C B^{\wedge}\right][C P]}=\frac{\left[A^{-} C P\right]+\left[B^{-} C P\right]+\left[C c^{-} C P\right]}{\left[A^{-}\right][C P]+\left[B^{-}\right][C P]+\left[C c^{-}\right][C P]} \tag{22}
\end{align*}
$$

giving

$$
\begin{equation*}
K_{\left(C B^{\wedge} C P\right)}=\frac{K_{A C P / A C P_{-}} K_{A / A-} K_{a}+K_{B C P / B C P_{-}} K_{B / B-} K_{h}+K_{C C C P / / C C P-} K_{C l / C--} K_{h} K_{t}}{K_{C B^{\wedge} / C B^{\wedge}} K_{a}^{\wedge}} \tag{23}
\end{equation*}
$$

Summarizing, the complex set of equations can be dramatically simplified to a diprotic acid where the three species can be involved in the complexation. The system is defined by two acid base constants given by eq.(5) and eq.(17) respectively $\mathrm{AH}^{+} / \mathrm{CB}^{\wedge}$ and $\mathrm{CB}^{\wedge} / \mathrm{CB}^{\wedge}$ - and three complexation constants eq.(6), eq.(12) and eq.(23) respectively with flavylium cation, CB^{\wedge} and CB^{\wedge}.

In order to get the mole fractions of all species a balance mass must be done
$C_{0}=\left[A H^{+}\right]+[A]+[B]+[C C]+\left[A^{-}\right]+\left[B^{-}\right]+\left[C c^{-}\right]+\left[A H^{+} C P\right]+[A C P]+[B C P]+[C c C P]+\left[A^{-} C P\right]+\left[B^{-} C P\right]+\left[C c^{-} C P\right]$

From the set of equations above all species can be written in terms of AH^{+}.

$$
\begin{align*}
& C_{0}=\left[A H^{+}\right]\left(1+\frac{K_{a}}{\left[H^{+}\right]}+\frac{K_{h}}{\left[H^{+}\right]}+\frac{K_{h} K_{t}}{\left[H^{+}\right]}+\frac{K_{A / A-} K_{a}}{\left[H^{+}\right]^{2}}+\frac{K_{B / B} K_{h}}{\left[H^{+}\right]^{2}}+\frac{K_{\text {ColCC- }} K_{h} K_{t}}{\left[H^{+}\right]^{2}}+\right. \\
& +K_{A H+C P}[C P]+K_{A C P} \frac{K_{a}}{\left[H^{+}\right]}[C P]+K_{B C P} \frac{K_{h}}{\left[H^{+}\right]}[C P]+K_{C C C P} \frac{K_{h} K_{t}}{\left[H^{+}\right]}[C P]+ \\
& \left.+\frac{K_{A C P / A C P-} K_{A C P} K_{a}}{\left[H^{+}\right]^{2}}[C P]+\frac{K_{B C P / B C P-} K_{B C C} K_{h}}{\left[H^{+}\right]^{2}}[C P]+\frac{K_{C C C P / C C C P-} K_{C C C P} K_{h} K_{t}}{\left[H^{+}\right]^{2}}[C P]\right) \\
& C_{0}=\left[A H^{+}\right]\left(1+K_{A H H+C P}[C P]+\frac{K_{a}+K_{h}+K_{h} K_{t}+K_{A C P} K_{a}[C P]+K_{\text {BCP }} K_{h}[C P]+K_{\text {CcPP }} K_{h} K_{t}[C P]}{\left[H^{+}\right]}+\right. \tag{25}\\
& \left.\frac{K_{A A-} K_{a}+K_{B / B-} K_{h}+K_{C O C C-} K_{h} K_{t}+\left(K_{A C P / A C P-} K_{A C P} K_{a}+K_{B C P I B C P-} K_{B C P} K_{h}+K_{C C C P / C C P-} K_{C C C P} K_{h} K_{t}\right)[C P]}{\left[H^{+}\right]^{2}}\right) \tag{26}
\end{align*}
$$

or simplifying

$$
\begin{equation*}
C_{0}=\left[A H^{+}\right]\left(1+K_{A H+C P}[C P]+\frac{K_{a}^{\wedge}+K_{1}[C P]}{\left[H^{+}\right]}+\frac{K_{2}+K_{3}[C P]}{\left[H^{+}\right]^{2}}\right) \tag{27}
\end{equation*}
$$

with

$$
\begin{align*}
& K_{a}^{\wedge}=K_{a}+K_{h}+K_{h} K_{t} \\
& K_{1}=K_{A C P} K_{a}+K_{B C P} K_{h}+K_{C C C P} K_{h} K_{t} \tag{28}\\
& K_{2}=K_{A / A-} K_{a}+K_{B / B-} K_{h}+K_{C c / C C-} K_{h} K_{t} \\
& K_{3}=K_{A C P / A C P-} K_{A C P} K_{a}+K_{B C P / B C P-} K_{B C P} K_{h}+K_{C C C P / C C C P-} K_{C C C P} K_{h} K_{t}
\end{align*}
$$

The mole fraction of AH^{+}can now be written

$$
\begin{equation*}
X_{A H+}=\frac{\left[A H^{+}\right]}{C_{0}}=\frac{1}{\left(1+K_{A H+C P}[C P]\right]+\frac{K_{a}^{\wedge}+K_{1}[C P]}{\left[H^{+}\right]}+\frac{K_{2}+K_{3}[C P]}{\left[H^{+}\right]^{2}}}=\frac{\frac{1}{\left(1+K_{A H C P}[C P]\right)}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2}+\frac{K_{a}^{\wedge}+K_{[}[C P]}{\left(1+K_{A H+C P}[C P]\right)}\left[H^{+}\right]+\frac{K_{2}+K_{3}[C P]}{\left(1+K_{A H+C P}[C P]\right)}} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
X_{A H+C P}=\frac{\left[A H^{+} C P\right]}{C_{0}}=\frac{\frac{K_{\text {AHACCH }}[C P]}{\left(1+K_{\text {AH }}[C P]\right)}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2}+\frac{K_{a}^{\hat{a}}+K_{1}[C P]}{\left(1+K_{A H+C P}[C P]\right)}\left[H^{+}\right]+\frac{K_{2}+K_{3}[C P]}{\left(1+K_{A H+C P}[C P]\right)}} \tag{30}
\end{equation*}
$$

The sum of both mole fractions

$$
\begin{equation*}
X_{A H+}+X_{A H+C P}=\frac{\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}} \tag{31}
\end{equation*}
$$

The values $K_{a(C P)}^{\wedge}$ and $K_{a(C P)}^{n}$ are obtained experimentally. Correspond to the inflection points when the absorbance is represented as a function of pH , as well as in the experiments of the reverse pH jumps. The constant $K_{\mathrm{AH}+\mathrm{CP}}$ is calculated by representing the absorption of the flavylium cation at $\mathrm{pH}=1$ as a function of the copigment concentration.

The mole fraction of A and ACP and their ionized species is obtained from the contributions
$X_{A}+X_{A C P}+X_{A-}+X_{A C P-}=\frac{\frac{K_{a}+A_{A C P} K_{a}[C P]}{\left(1+K_{A H+C P}[C P]\right)}\left[H^{+}\right]+\frac{K_{A / A-} K_{a}+K_{A C P / A C P-} K_{A C P} K_{a}[C P]}{\left.1+K_{A H+C P}[C P]\right)}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}}$
$K_{a}^{\wedge}=K_{a}$
$K_{1}=K_{A C P} K_{a}$
$K_{2}=K_{A / A-} K_{a}$
$K_{3}=K_{A C P / A C P-} K_{A C P} K_{a}$

Identically for the hemiketal and cis-chalcones

$$
\begin{align*}
& X_{B}+X_{B C P}+X_{B^{-}}+X_{B C P}=\frac{\frac{\left(K_{h}+K_{B C P} K_{h}[C P]\right)\left[H^{+}\right]+K_{B / B} K_{h}+K_{B C P / B C P}-K_{B C P} K_{h}[C P]}{\left(1+K_{A H+C P}[C P]\right)}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}} \tag{34}
\end{align*}
$$

On the other hand the reverse pH jumps in the presence of co-pigment can be written as follows for AH^{+}, their co-pigments together with A its co-pigment and the respective ionized species (in reverse pH jumps these species appear as the initial absorption).

$$
\begin{equation*}
X_{A H+}+X_{A H+C P}+X_{A}+X_{A C P}+X_{A-}+X_{A-C P}=\frac{\left[H^{+}\right]^{2}+a_{o(C P} K_{a(C P)}^{\wedge}\left[H^{+}\right]+a_{1(C P} K_{a(C P)}^{\wedge} K_{a(C P)}^{n}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}} \tag{36}
\end{equation*}
$$

where $a_{0(\mathrm{CP})}$ and $a_{1(\mathrm{CP})}$ are respectively the mole fraction of A plus ACP and A- plus ACP-

Consequently

$$
\begin{align*}
& a_{0(C P)} K_{a(C P)}^{\wedge}=\frac{K_{a}+A_{A C P} K_{a}[C P]}{\left(1+K_{A H+C P}[C P]\right)} \tag{37}\\
& a_{1(C P)} K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}=\frac{K_{A C P / A C P-} K_{A C P} K_{a}}{1+K_{A H+C P}[C P]} \tag{38}
\end{align*}
$$

Proceeding identically for the other species

$$
\begin{align*}
& X_{B}+X_{B C P}+X_{B-}+X_{B-C P}=\frac{b_{o(C P)} K_{a(C P}^{\wedge}\left[H^{+}\right]+b_{1(C P)} K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}} \tag{39}\\
& X_{C c}+X_{C C P P}+X_{C c^{-}}+X_{C c-C P}=\frac{\left.c_{o(C P)}\right)_{a(C P)}^{\wedge}\left[H^{+}\right]+c_{1(C P} K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\wedge}\left[H^{+}\right]+K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}} \tag{40}
\end{align*}
$$

$b_{0(C P)} K_{a(C P)}^{\wedge}=\frac{K_{h}+A_{B C P} K_{h}[C P]}{\left(1+K_{A H+C P}[C P]\right)}$
$b_{1(C P)} K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}=\frac{K_{B C P / B C P-} K_{B C P} K_{h}}{1+K_{A H+C P}[C P]}$
$c_{0(C P)} K_{a(C P)}^{\wedge}=\frac{K_{h} K_{t}+K_{C c C P} K_{h} K_{t}[C P]}{\left(1+K_{A H+C P}[C P]\right)}$
$c_{1(C P)} K_{a(C P)}^{\wedge} K_{a(C P)}^{\wedge}=\frac{K_{C c C P / C C C P-} K_{C c C P} K_{h} K_{t}}{1+K_{A H+C P}[C P]}$

Summarizing eq.(37) eq.(39) and eq.(41) give respectively $K_{\mathrm{ACP}}, K_{\mathrm{BCP}}$ and K_{CcCP}
On the other hand eq.(38) eq.(40) and eq.(42) give respectively the ionization constant of the complexes $K_{\mathrm{ACP} / \mathrm{ACP}-,}, K_{\mathrm{ABCP} / \mathrm{BCP}-\text {, }}$ and $K_{\text {CcCP/CcCP. }}$
It is easy to prove that

$$
\begin{equation*}
K_{A C P / A C P-}=\frac{K_{A C P-}}{K_{A C P}} K_{A / A-} ; \quad K_{B C P / B C P-}=\frac{K_{B C P-}}{K_{B C P}} K_{B / B-} \quad K_{C C C P / C C C P-}=\frac{K_{C C C P-}}{K_{C C C P}} K_{C c / C c-} \tag{45}
\end{equation*}
$$

When the equilibrium is considered the contribution of trans-chalcones should be added
$X_{C t}+X_{C C P}+X_{C r}+X_{C T C P}=\frac{\frac{\left(K_{h} K_{t} K_{i}+K_{C C P} K_{h} K_{t} K_{i}[C P]\right)\left[H^{+}\right]+K_{C r C C} K_{h} K_{t} K_{i}+K_{C C P P C C C P} K_{C C P P} K_{h} K_{t} K_{i}[C P]}{\left(1+K_{A t r P}[C P]\right)}}{\left[H^{+}\right]^{2}+K_{a(C P)}^{\prime}\left[H^{+}\right]+K_{a(C P)}^{\prime} K_{a(C P)}^{\prime \prime}}$

$$
\begin{equation*}
X_{C T}+X_{C C P}+X_{C-1}+X_{C-C P}=\frac{d_{0(C P)} K_{a(C P)}^{\prime}\left[H^{+}\right]+d_{1(C P)} K_{a(C P)}^{\prime} K_{a(C P)}^{\prime \prime}}{\left.\left[H^{+}\right]^{2}+K_{a(C P)}^{a}\left[H^{+}\right]+K_{a(C P)}^{\prime} K_{a(C P)}^{\prime a}\right)} \tag{47}
\end{equation*}
$$

$$
\begin{align*}
& d_{0(C P)} K_{a(C P)}^{\prime}=\frac{K_{h} K_{t} K_{i}+K_{C t C P} K_{h} K_{t} K_{i}[C P]}{\left(1+K_{A H+C P}[C P]\right)} \tag{48}\\
& d_{1(C P)} K_{a(C P)}^{\prime} K_{a(C P)}^{\prime \prime}=\frac{K_{C t C P / C t C P-} K_{C c C P} K_{h} K_{t} K_{i}}{1+K_{A H+C P}[C P]} \tag{49}
\end{align*}
$$

Comparing eq.(46) with eq.(48)

$$
\begin{align*}
& d_{0(C P)} K_{a(C P)}^{\prime}=\frac{K_{h} K_{t} K_{i}+K_{C i C P} K_{h} K_{t} K_{i}[C P]}{\left(1+K_{A H+C P}[C P]\right)} \tag{50}\\
& d_{1(C P)} K_{a(C P)}^{\prime} K_{a(C P)}^{\prime \prime}=\frac{K_{C i C P / C t C P-} K_{C i C P} K_{h} K_{t} K_{i}}{1+K_{A H+C P}[C P]} \tag{51}
\end{align*}
$$

and
$K_{C I C P / C T C P-}=\frac{K_{C I C P-}}{K_{C I C P}} K_{C I C T-}$

