Kinetics Study of the Reactions of 4-Methyl-2-Pentanone and m-Ethyl Toluene with Hydroxyl Radical between 240-340 K and 1-8 Torr Using the Relative Rate/Discharge Flow/Mass Spectrometry Technique

Rachel Kaiser, John Hasenbein, and Zhuangjie Li*

Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831

Supporting Information

Table 1S: List of relevant chemical reactions used in the chemical model simulation in assessing the contribution of atomic oxygen and hydrogen to the decay of styrene and reference compounds

	$k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$	Reference
$F + H_2O \rightarrow HF + OH$	1.4×10^{-11}	25
$OH + OH \rightarrow H_2O + O$	1.9×10^{-12}	25
$OH + wall \rightarrow product$	10 ^b	estimated
$O + OH \rightarrow O_2 + H$	3.3×10^{-11}	25
$H + wall \rightarrow product$	10 ^b	estimate ^d
$\rm H + OH + M \rightarrow \rm H_2O + M$	2.3×10^{-31c}	33
$O + F_2 \rightarrow FO + F$	1.0×10^{-16}	34
$\rm FO + OH \rightarrow O_2 + HF$	1.3×10^{-12}	estimate ^e
$H + F_2 \rightarrow HF + F$	1.38×10^{-12}	35
Target + $OH \rightarrow products$	1.25×10^{-11}	this work ^f
Reference + OH \rightarrow products	1.09×10^{-11}	27 ^g
Target + $O \rightarrow products$	4.52×10^{-12}	36-39 ^h
Reference $+ O \rightarrow$ products	3.50×10^{-11}	40-41 ^h
Target + H \rightarrow products	6.00×10^{-16}	36,38
Reference + H \rightarrow products	4.37×10^{-15}	40-41 ^h

^aInitial concentrations are: $[F]_o = 1.0 \times 10^{13}$, $[H_2O]_o = 7.1 \times 10^{14}$, $[F_2]_o = 2.0 \times 10^{12}$, $[Target]_o = 4.3 \times 10^{13}$, $[Reference]_o = 7.9 \times 10^{13}$ molecules cm⁻³, respectively. The initial concentrations of $[H]_o$ and $[O]_o$ are zero. ^bUnits for the wall loss constant is s⁻¹, while the ^cunits for the termination reaction of H + OH is cm⁶ molecule⁻² s⁻¹. ^dEstimate values were used on the basis from the OH wall loss. ^eEstimation was based on k(CIO + OH). ^f $k_{MIBK+OH} = 1.25 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹,

 $k_{MET+OH} = 2.07 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. ${}^{g}k_{I,4-dioxane+OH} = 1.09 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, ${}^{27}k_{nonane+OH} = 1.13 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. ${}^{28}{}^{h}k_{MIBK+O} = 4.83 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, and $k_{MIBK+H} = 6.00 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ were estimated from O and H + acetone, ${}^{36}{}^{h}k_{MET+O} = 3.98 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was estimated from O + m-xylene, ${}^{37}k_{MET+H} = 1.82 \times 10^{-13} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ was estimated from O + m-xylene, ${}^{37}k_{MET+H} = 6.81 \times 10^{-14} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ was estimated from O and H + 1,4-dioxane+O = $k_{I,4-dioxane+H} = 6.81 \times 10^{-14} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ and $k_{nonane+O} = 1.70 \times 10^{-13} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ was estimated from O and H + 1,4-dioxane, ${}^{39}k_{n-pentane+H} = 4.37 \times 10^{-15} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ and $k_{nonane+O} = 1.70 \times 10^{-13} \text{ cm}^3$ molecule ${}^{-1} \text{ s}^{-1}$ was estimated from H and O + octane, 40,41 respectively.