Supporting Information

Single-Crystal NMR Characterization of Halogen Bonds

Yijue Xu, Bulat Gabidullin, and David L. Bryce*

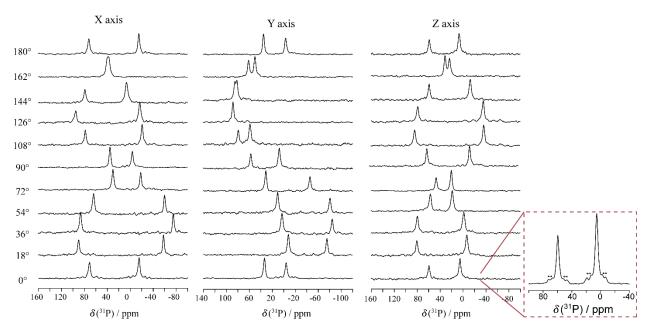
*Author to whom correspondence is to be addressed

Department of Chemistry and Biomolecular Sciences

University of Ottawa

10 Marie Curie Private

Ottawa, Ontario K1N 6N5


Canada

Tel: +1-613-562-5800 ext.2018; fax: +613-562-5170

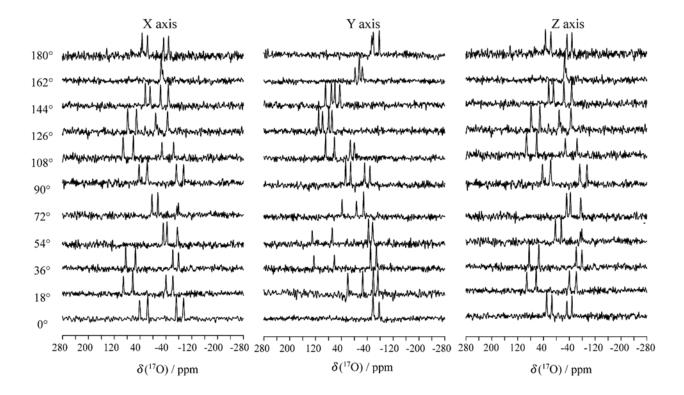

Email: dbryce@uottawa.ca

Figure S1. Halogen bond geometry in one unit cell of cocrystal 2·ACN from single-crystal X-ray diffraction. The three crystallographically distinct sites are shown with labels consistent with the main text. Molecules 2·ACN _1 and _3 share similar environments and orientation whereas 2·ACN _2 faces in the opposite direction.

Figure S2. Single-crystal ³¹P NMR spectra ($B_0 = 9.4$ T) for Ph₃P¹⁷O. Spectra were obtained at 9° rotational increments about the X, Y, and Z axes. Here only every second spectrum is shown. Shown in the inset is a magnification of the spectra to show the presence of spin-spin coupling between ¹⁷O and ³¹P.

Figure S3. Single-crystal ¹⁷O NMR spectra ($B_0 = 9.4$ T) for monoclinic Ph₃P¹⁷O. Spectra were obtained at 9° rotational increments about the X, Y, and Z axes. Here only every second spectrum is shown.

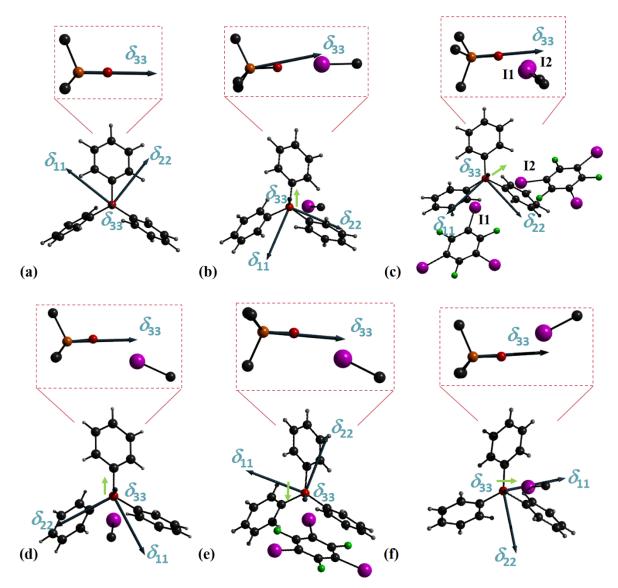
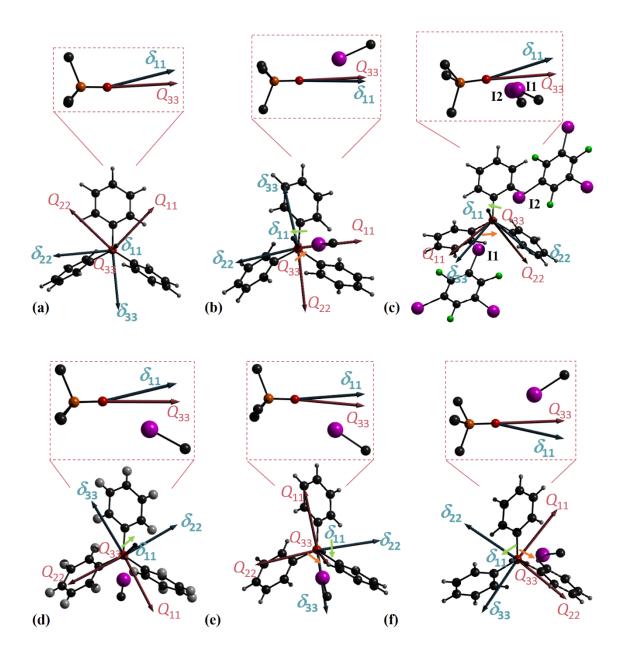
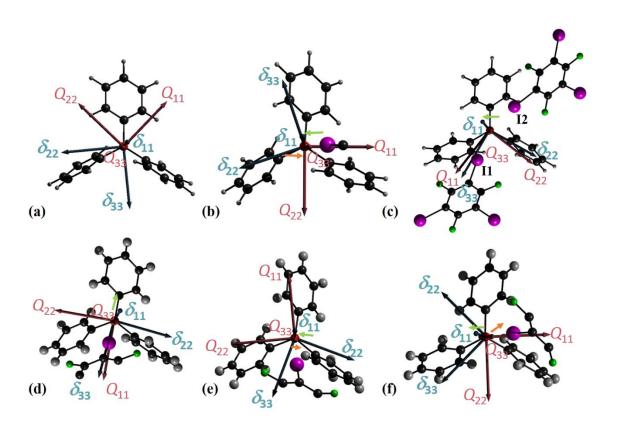
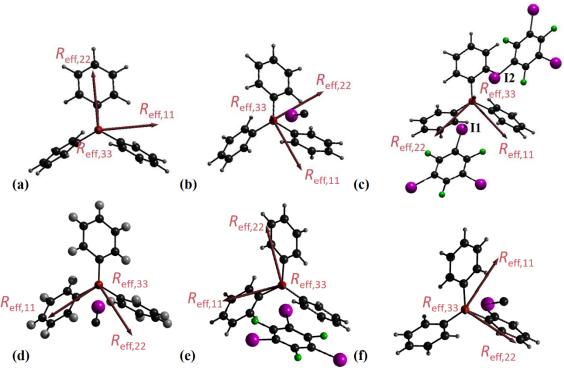



Figure S4. Depictions of the crystal structure of the starting material Ph₃P¹⁷O (a), and its halogen-bonded cocrystals: 1 (b), 2 (c) and 2·ACN_1 (d), 2·ACN_2 (e) and 2·ACN_3 (f) where the P=O bond is perpendicular to the plane for illustration of the orientation of 31 P CS tensors (indicated by dark green arrows) in the molecular frame. The light green arrows indicate the direction of δ_{33} movement upon halogen bond formation. In 1, 2·ACN_1, and 2·ACN_3, only iodine-carbon fragments are shown; the rest of the molecules are omitted to more clearly show the vectors. Shown in the insets are the truncated projections of the structures when the P=O bond is within the plane to illustrate the change in direction of δ_{33} .

Figure S5. Projection of the crystal structures of the starting material Ph₃P¹⁷O (a), and its halogen-bonded cocrystals: **1** (b), **2** (c), and **2·ACN**_**1** (d), **2·ACN**_**2** (e) and **2·ACN**_**3** (f) where the P=O bond is perpendicular to the plane for illustration of the GIPAW DFT-calculated orientations of ³¹P the CS tensors (indicated as dark green arrows) in the molecular frame. The light green arrows indicate the direction of δ₃₃ movement upon halogen bonding. In **1**, **2·ACN**_**1**, and **2·ACN**_**3**, only iodine-carbon fragments are shown and the rest of the molecules are omitted to more clearly show the vectors.


Figure S6. Projection of the crystal structure of the starting material Ph₃P¹⁷O (a), and its halogenbonded cocrystals: **1** (b), **2** (c) and **2·ACN_1** (d), **2·ACN_2** (e), and **2·ACN_3** (f) where the P=O bond is perpendicular to the plane to illustrate the orientation of the principal components of the ¹⁷O CS (dark green arrows) and quadrupolar coupling tensors (pink arrows) in the molecular frame. The light green arrows and orange arrows, respectively, indicate the direction of δ_{11} and Q_{33} movement upon halogen bonding. In **1** and **2·ACN**, only iodine-carbon fragments are shown and

the rest of the molecules are omitted to more clearly show the vectors. Shown in the insets are the simplified projections of the structures when the P=O bond is within the plane to illustrate the change of the direction of δ_{11} and Q_{33} .

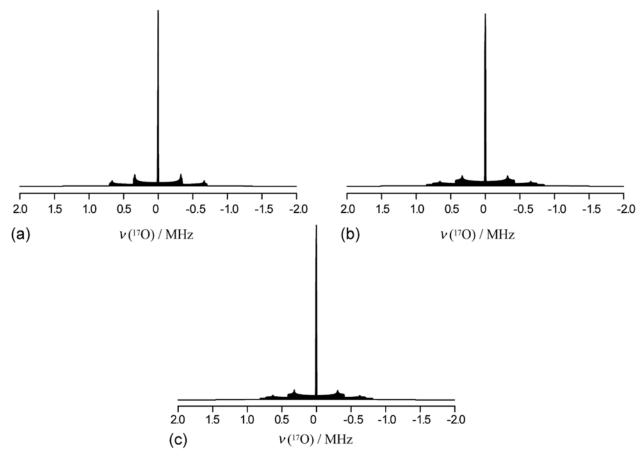
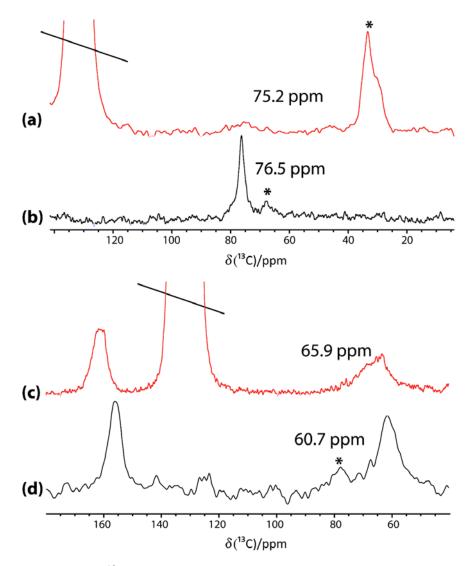


Figure S7. Projection of the crystal structure of the starting material Ph₃P¹⁷O (a), and its halogen-bonded cocrystals: **1** (b), **2** (c) and **2·ACN_1** (d), **2·ACN_2** (e), and **2·ACN_3** (f) where the P=O bond is perpendicular to the plane to illustrate the GIPAW DFT-calculated orientation of the principal components of ¹⁷O CS (dark green arrows) and quadrupolar coupling tensors (pink arrows) in the molecular frame. The green arrows and orange arrows, respectively, indicate the


direction of δ_{11} and Q_{33} movement upon halogen bonding. In 1 and 2·ACN, only iodine-carbon fragments are shown and the rest of the molecules are omitted to more clearly show the vectors.

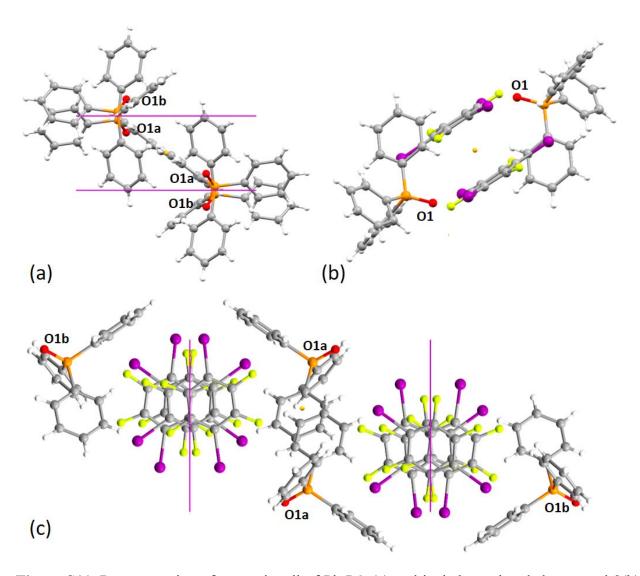

Figure S8. Projection of the crystal structures of the starting material Ph₃P¹⁷O (a), and its halogen-bonded cocrystals: **1** (b), **2** (c) and **2·ACN**_**1** (d), **2·ACN**_**2** (e), and **2·ACN**_**3** (f) where the P=O bond is perpendicular to the plane for illustration of the experimental orientations of ³¹P-¹⁷O effective dipolar coupling principal components (indicated as pink arrows) in the molecular frame. In **1**, **2·ACN**_**1**, and **2·ACN**_**3**, only iodine-carbon fragments are shown and the rest of the molecules are omitted to more clearly show the vectors.

Figure S9. Simulated ¹⁷O static powder NMR spectra at 9.4 T for Ph₃PO (a) and its halogen-bonded cocrystals **1**(b) and **2**(c). The relatively low intensities make the measurement of STs by single-crystal NMR very challenging.

Figure S10. Experimental ¹³C MAS SSNMR spectra for the region of the carbon covalently bonded to iodine. The spectra corresponding to the starting materials p-C₆F₄I₂(b) and sym-C₆F₃I₃(d) are shown in black; the spectra corresponding to the cocrystals **1**(a) and **2**(c) are shown in red. The spectra of cocrystals **1** and **2** were obtained using ¹³C cross-polarization (CP) experiments with a MAS rate of 10 kHz whereas the spectrum of sym-C₆F₃I₃(d) was obtained using a ¹³C Hahn-echo (i.e., $\pi/2-\tau_1-\pi-\tau_2$ -acq) experiment with spinning speed of 8 kHz. The spectrum of p-C₆F₄I₂ (b) was acquired at 21.1 T and was previously shown in reference 1. Other spectra were acquired at 9.4 T. The asterisks indicate spinning sidebands.

Figure S11. Representation of one unit cell of Ph₃PO (a) and its halogen-bonded cocrystal **2**(b) and **1**(c) from single-crystal X-ray diffraction. The small yellow-orange spheres indicate the inversion centers, resulting in two magnetically equivalent oxygen atoms represented by the same label. The pink lines indicate glide planes, generating two magnetically non-equivalent oxygen atoms represented by different letters.

Table S1. Single-Crystal X-Ray Data and Selected Data Collection Parameters for **2**·**ACN** (cif 1907250)

	2·ACN
Empirical Formula	C ₂₆ H ₁₈ F ₃ I ₃ NOP
-	
Formula Weight	829.08
Crystal Size, mm ³	$0.722 \times 0.404 \times 0.353$
Crystal System	Triclinic
Space Group	$P\overline{1}$
Z	6
Volume, Å	4229.61(13)
Calculated density, Mg m ⁻³	1.953
a, Å	13.6994 (2)
b, Å	18.2829 (4)
c, Å	20.3552 (3)
α , deg	115.9880 (10)
β, deg	92.9510 (10)
γ, deg	108.6840 (10)
Absorption coefficient,	3.421
mm^{-1}	
F(000)	2340
θ range for data collection, °	1.845 to 26.500
Limiting indices	$-15 \le h \le 17$,
	$-22 \le k \le 18,$
	$-24 \le 1 \le 25$
Reflections collected/	33791 / 17404
unique	
R_{int}	0.0298
Completeness to $\theta = 25.242^{\circ}$, %	99.3
Max and min transmission	0.746 and 0.534
Data/ restraints/ parameters	17404 / 0 / 949
Goodness-of-fit on F^2	0.975
Final R indices $[I > 2\alpha(I)]$	$R_1 = 0.0427,$
	$wR_2 = 0.0904$
R indices (all data)	$R_1 = 0.0983,$
	$wR_2 = 0.1179$
largest diff. peak and hole, e · Å -3	0.669 and -1.145

Table S2. Principal Components and Direction Cosines of the ³¹P Chemical Shift Tensors in the Crystal Axis Frame^a

compound		components / ppm	a*	ь	С
	δ_{11}	96.6(3)	-0.60(2)	0.53(1)	0.60(2)
Ph ₃ PO	δ_{22}	83.3(6)	0.74(1)	0.65(2)	0.16(4)
	δ_{33}	-101.3(7)	0.31(4)	-0.54(2)	0.79(1)
	δ_{11}	93.9(1)	0.06(3)	-0.48(3)	0.88(3)
1	δ_{22}	89.1(7)	0.90(2)	-0.35(3)	-0.25(5)
	δ_{33}	-92.0(2)	0.42(4)	0.81(3)	0.41(1)
	δ_{11}	96.4(3)	0.10(3)	-0.95(3)	0.31(2)
2^{b}	δ_{22}	82.5(7)	-0.96(2)	-0.01(3)	0.28(5)
	δ_{33}	-92.0(7)	0.26(4)	0.32(3)	0.91(1)
2·ACN	δ_{11}	92 (1)	-0.93(2)	0.37(5)	0.07(1)
	$\delta_{\!22}$	87(2)	-0.37(4)	-0.83(2)	-0.43(2)
	δ_{33}	-94(6)	0.10(2)	0.42(3)	-0.90(1)
	δ_{11}	93(1)	-0.98(2)	-0.10(1)	-0.17(1)
	δ_{22}	87(2)	-0.16(2)	0.92(2)	0.37(2)
	δ_{33}	-96(6)	0.12(2)	0.39(3)	-0.91(1)
	δ_{11}	92(1)	-0.92(2)	0.38(5)	0.06(1)
	δ_{22}	87(2)	-0.37(4)	-0.83(2)	-0.42(2)
	δ_{33}	-98(6)	0.11(2)	0.41(3)	-0.90(2)

^a The convention used for designating the three principal components of the CS tensor is $\delta_{11} \ge \delta_{22} \ge \delta_{33}$.

^b Compound **2** cannot provide error estimates generated from comparison between two crystallographic equivalent but magnetically distinct sites like Ph₃PO and **1**. Uncertainties from single-crystal NMR data fitting are only on the order of 0.1 ppm. Therefore, we estimate the error to be similar to the largest error present in analysis of Ph₃PO and **1**.

Table S3. Principal Components and Direction Cosines of the ¹⁷O Chemical Shift Tensors in the Crystal Axis Frame^a

compound		components / ppm	a*	ь	c
	δ_{11}	151(8)	-0.43(2)	0.41(3)	-0.81(1)
Ph ₃ PO	δ_{22}	12(1)	-0.86(2)	0.05(5)	0.49(3)
	δ_{33}	-8(2)	0.24(3)	0.91(2)	0.33(6)
	δ_{11}	109(3)	-0.50(5)	-0.71(3)	-0.49(1)
1	δ_{22}	19(2)	0.63(7)	0.08(7)	-0.78(7)
	δ_{33}	5(1)	0.59(6)	-0.70(3)	0.40(12)
	δ_{11}	152(8)	0.42(5)	0.29(3)	0.86(1)
2 ^b	$\delta_{\!22}$	33(2)	0.90(7)	-0.23(7)	-0.37(7)
	δ_{33}	-10(2)	-0.09(6)	-0.93(3)	0.36(12)
2·ACN ^b	δ_{11}	125(8)	0.19(5)	0.56(3)	-0.81(1)
	$\delta_{\!22}$	29(2)	-0.92(7)	0.38(7)	0.05(7)
	δ_{33}	-11(2)	-0.34(6)	-0.74(3)	-0.58(12)
	δ_{11}	133(8)	0.33(5)	0.57(3)	-0.75(1)
	δ_{22}	41(2)	-0.89(7)	-0.08(7)	-0.46(7)
	δ_{33}	-30(2)	0.32(6)	-0.82(3)	-0.47(12)

^a The convention used for designating the three principal components of the CS tensor is $\delta_{11} \ge \delta_{22} \ge \delta_{33}$.

^b Compounds 2 and 2·ACN cannot provide error estimates generated from comparison between two crystallographic equivalent but magnetically distinct sites like Ph₃PO and 1. Uncertainties from single-crystal NMR data fitting are only on the order of 0.1 ppm for CS tensors. Therefore, we estimate the error to be similar to the largest error present in analysis of Ph₃PO and 1.

Table S4. Principal Components (in MHz) and Direction Cosines of the ¹⁷O Quadrupolar Coupling Tensors in the Crystal Axis Frame^a

compound		components / MHz	a*	ь	c
	Q33	-0.228(2)	0.32(2)	-0.50(2)	0.80(1)
Ph ₃ PO	Q_{22}	0.118(1)	0.22(6)	-0.78(2)	-0.58(1)
	Q_{11}	0.110(3)	-0.92(2)	-0.37(6)	-0.14(2)
	Q33	-0.248(1)	0.46(3)	0.80(1)	0.37(1)
1	\widetilde{Q}_{22}	0.130(2)	-0.72(1)	0.58(2)	-0.37(4)
	Q_{11}	0.118(1)	-0.51(3)	-0.10(1)	0.85(1)
	Q33	-0.240(2)	0.20(3)	0.28(2)	0.94(1)
2 ^b	\widetilde{Q}_{22}	0.132(1)	0.98(6)	0.01(2)	-0.21(4)
	\widetilde{Q}_{11}	0.108(3)	0.06(3)	-0.96(6)	0.27(2)
2·ACN ^b	<i>Q</i> 33	-0.247(2)	0.11(3)	0.43(2)	-0.90(1)
	\widetilde{Q}_{22}	0.135(1)	0.89(6)	-0.44(2)	-0.10(4)
	\widetilde{Q} 11	0.112(3)	-0.43(3)	-0.79(6)	-0.43(2)
	\widetilde{Q}_{33}	-0.241(2)	0.13(3)	0.44(2)	-0.89(1)
	\widetilde{Q}_{22}	0.133(1)	-0.97(6)	-0.13(2)	-0.21(4)
	\widetilde{Q} 11	0.107(3)	-0.21(3)	0.89(6)	0.40(2)

^a The convention used for designating the three principal components of the quadrupolar coupling tensor is $|Q_{33}| \ge |Q_{22}| \ge |Q_{11}|$.

b Compounds 2 and 2·ACN cannot provide error values estimated from comparison between two crystallographic equivalent but magnetically distinct sites like Ph₃PO and 1. Uncertainties from single-crystal NMR data fitting are only on the order of 0.001 MHz for EFG tensors. Therefore, we estimate the error to be similar to the largest error present in analysis of Ph₃PO and 1.

Table S5. Principal Components (in Hz) and Direction Cosines of the Averaged Effective ¹⁷O³¹P Dipolar Coupling Tensors in the Crystal Axis Frame^a

compound		components / Hz	a*	b	c
	$R_{ m eff,33}$	3715(42)	-0.33(3)	0.51(2)	-0.80(1)
Ph ₃ PO	$R_{ m eff,22}$	-1832(32)	0.22(11)	0.86(2)	0.46(4)
	$R_{ m eff,11}$	-1883(10)	-0.92(3)	0.03(11)	0.39(4)
	$R_{ m eff,33}$	3734(20)	-0.45(3)	-0.80(3)	-0.40(2)
1	$R_{ m eff,22}$	-1821(10)	0.74(2)	-0.09(5)	-0.67(3)
	$R_{ m eff,11}$	-1913(30)	-0.50(5)	0.59(3)	-0.63(2)
	$R_{ m eff,33}$	3795(42)	0.26(3)	0.32(3)	0.91(3)
2 ^b	$R_{ m eff,22}$	-1853(32)	0.10(11)	-0.95(5)	0.31(4)
_	$R_{ m eff,11}$	-1942(30)	-0.96(5)	-0.01(11)	0.28(4)
2·ACN ^b	$R_{ m eff,33}$	3883(42)	0.11(3)	0.46(3)	-0.88(3)
	$R_{ m eff,22}$	-1870(32)	-0.44(11)	-0.77(5)	-0.46(4)
	$R_{ m eff,11}$	-2014(30)	0.89(5)	-0.44(11)	-0.12(4)
	$R_{ m eff,33}$	3944(42)	0.12(3)	0.44(3)	-0.89(3)
	$R_{ m eff,22}$	-1900(32)	-0.30(11)	0.87(5)	0.39(4)
	$R_{ m eff,11}$	-2044(30)	-0.95(5)	-0.22(11)	-0.23(4)

^a The convention used for designating the three principal components of the effective ³¹P-¹⁷O dipolar coupling tensor is $|R_{\text{eff,33}}| \ge |R_{\text{eff,11}}| \ge |R_{\text{eff,22}}|$.

Reference:

(1) Viger-Gravel, J.; Leclerc, S.; Korobkov, I.; Bryce, D. L. Correlation Between ¹³C Chemical Shifts and the Halogen Bonding Environment in a Series of Solid *para*-Diiodotetrafluorobenzene Complexes. *CrystEngComm* **2013**, *15*, 3168–3177.

^b Compounds 2 and 2·ACN cannot provide error values estimated from comparison between two crystallographic equivalent but magnetically distinct sites like Ph₃PO and 1. Uncertainties from single-crystal NMR data fitting are only on the order of 10 Hz. Therefore, we estimate the error to be similar to the largest error present in analysis of Ph₃PO and 1.