Supporting Information

Repurposing of tranilast for potential neuropathic pain treatment by inhibition of sepiapterin reductase in the BH₄ pathway

Benjamin J.R. Moore,^{1,2} Barira Islam,^{1,2} Sean Ward,³ Olivia Jackson,³ Rebecca Armitage,³ Jack Blackburn,⁴ Shozeb Haider⁵ and Patrick C. McHugh^{1,2*}

¹ Centre for Biomarker Research, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

² Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

³ Innovative Physical Organic Solutions (IPOS), Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

⁴ Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

⁵ UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK

*To whom the correspondence should be addressed

SUPPORTING TABLES

Table S1. Compounds selected from docking of the LOPAC¹²⁸⁰ library that showed docking scores below -35. The IC₅₀ concentrations calculated from *in vitro* SPR protein assays are included, along with their hydrogen bonds formed with the four key binding residues in the starting SPR-sepiapterin complex. The green boxes indicate the presence of a hydrogen bond (bond strength > 1 kcal/mol calculated in Molsoft). The grey boxes indicate no hydrogen bond of the hSPR residue with the drug.

		Interactions With Sepiapterin Binding Residues				
Compound Name	IC50 (µM)	S157	Y170	G199	D257	Other
Tranilast	5.889					
Nordihydroguaiaretic acid	8.262					
N-Acetylserotonin	11.61					
Aurintricarboxylic Acid	33.19					
6-Chloromelatonin	37.3					
Emodin	62.03					
N-(4-amino-2-chlorophenyl)pthalimide	63.46					
Tyrphostin AG537	94.63					
Hispidin	106.2					
BIO	117.9					
Genistein	137.2					
L-732138	148.8					
Tyrphostin AG494	204.3					
Quercetin Dihydrate	234.7					
N-Acetyltryptamine	246.5					
Nocodazole	264.5					
Supercinnamaldehyde	362.2					
Niclosamide	620.7					
5,6,7,8-Tetrahydro-L-biopterin	No Inhibition					
AS-252424	No Inhibition					
Benserazide	No Inhibition					
Benzamil	No Inhibition					
CP-91149	No Inhibition					
Formoterol	No Inhibition					
Ofloxacin	No Inhibition					
Prazosin	No Inhibition					
S(+)- Raclopride L-tartrate	No Inhibition					

Table S2. List of antibodies used for western blot studies.

Antibody	Species	Dilution	Supplier	Reference	
GCH1	Hs	1:500	SantaCruz Biotech	sc-134574	
SPR	Hs	1:1000	Abcam	ab157194	
STAT3	Hs	1:1000	ProSci Inc	7197	
GAPDH	Hs	1:2000	Abcam	ab8245	
AlexaFluor 647	Goat anti-mouse	1:2000	ThermoFisher LifeTech	A21236	
AlexaFluor 546	Goat anti-rabbit	1:2000	ThermoFisher LifeTech	A11010	

Gene	Species	Primer Sequence	Tm(°C)
β -Actin H	Цс	F: CTTCCAGCCTTCCTTCCTG	60
	П	R: CTCCTGCTTGCTGATCCAC	60
	11-	F: GGTATGGACTGTGGTACTGAG	61.8
GAPDH	HS	R: TGCACCACCAACTGCTTAGC	59.4
CCIII	Ша	F: ACAAACAAAACCGCAACTCC	60
ССПІ	пѕ	R: TGGGATGAATTTGAAGAGCA	59
ССНЕР	\boldsymbol{u}_{c}	F: TCTGCCTTGCTCCTCTTC	60
GCHFK	ПЗ	R: CCCTCTCCCACTGCTTGAC	61
	Ша	F: TGTAACTGCTGGACCCAAGG	59.4
CIBPI	пѕ	R: TACACGCCTCTGTCATTCGT	59.4
CSV2R	$\boldsymbol{u}_{\mathrm{c}}$	F: CTGTGTGTTGGCTGAGCTGT	59.4
USK5p	115	R: TTTGCTCCCTTGTTGGAGTT	55.3
iNOS	$\boldsymbol{u}_{\mathrm{c}}$	F: CCATAAGGCCAAAGGGATTT	55.3
inos	115	R: ATCTGGAGGGGGTAGGCTTGT	59.4
SDD	$\boldsymbol{u}_{\mathrm{c}}$	F: GGCTCTCTTGGGGGATGTGT	60
SIK	115	R: TTCAGGACGCTGGAAGTCA	60
STAT1	\boldsymbol{u}_{c}	F: TCAGTCTTTTCCAGCAGCTCA	57.9
SIAII	115	R: CTTCAAGACCAGCGGCCTC	61
STAT2	$u_{\rm c}$	F: GGGAGAGATTGACCAGCAGTAT	60.3
SIAIS	115	R: TGGCTTCTCAAGATACCTGCTC	60.3
NEVR1	$\boldsymbol{u}_{\mathrm{c}}$	F: GAGCAGGCATCCATCGAGAT	59.4
ΝΓΛΒΙ	115	R: GGCTGTCAGATGGTCCTTGT	57.3
ςρυν1	$\boldsymbol{u}_{\mathrm{c}}$	F: ATGCTGGCTATGAGCAGGTC	59.4
<u> ΣΓΠΚΙ</u>	ПЗ	R: GTGCAGAGACAGCAGGTTCA	59.4

Table S3. List of primer pairs used for qRT-PCR.

SUPPORTING FIGURES

Figure S1. The tetrahydrobiopterin biosynthesis pathways in the body. The *de novo*, salvage and biopterin recycling pathways are shown in blue, orange and green, respectively. The biosynthesis of BH₄ starts *de novo* from guanosine triphosphate (GTP), through reactions catalyzed by the enzymes GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyltetrahydropterin synthase (PTPS) and sepiapterin reductase (SPR). Alternatively, the final two-step reduction of the intermediate 6pyruvoyl-tetrahydrobiopterin (PPS) to BH₄ can be effected by aldose reductase (AKR) and carbonyl reductase (CBR). The product of both these reactions is sepiapterin, which can be salvaged into BH_4 through SPR, CBR and dihydrofolate reductase (DHFR). Two additional enzymes, pterin-4acarbinolamine dehydratase (PCD) and dihydropteridine reductase (QDPR) are involved in the regeneration of BH₄ from intermediates formed during the hydroxylation of aromatic amino acids. GCH1 activity is modulated by the interaction of GTP cyclohydrolase feedback regulator (GFRP) and effector molecules, BH₄ and phenylalanine. Phe, phenylalanine; Tyr, tyrosine; Trp, tryptophan; Arg, arginine; Cit, citrulline; PAH, phenylalanine hydroxylase; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase; NOS, nitric oxide synthase; 5-OH-Trp, 5-hydroxytryptophan; AADC, aromatic amino-acid decarboxylase; DBH, dopamine β-hydroxylase; NAT, N-acetyltransferase; NAS, N-acetylserotonin; HIOMT, hydroxyindole-O-methyltransferase (Figure amended from Reference³³ in the main text).

Figure S2. The scores of $LOPAC^{1280}$ compounds on hSPR obtained by using the docking tool of Molsoft ICM. The sepiapterin showed the lowest score of -52.09 (compound number 1123). Only docking scores of 20 and below are shown in the figure. The cut-off of -35 is shown as a red dashed line.

Figure S3. Stability of the hydrogen bonds in the hSPR-drug simulations. The interactions of (a) hSPR-sepiapterin, (b) hSPR-tranilast, (c) hSPR-NDGA and (d) hSPR-SPRi3 are shown in the figure. The aromatic ring of NADPH sampled stacking interactions with aromatic rings of sepiapterin, tranilast and NDGA for some part of the simulations. No stable hydrogen bond was sampled by SPR-SPRi3 complex. A cut-off of 3.5 Å and bond angle of 20° was used for hydrogen bond formation.

Figure S4. Distance between the atoms of the tranilast and NADPH rings to visualise stacking interactions in the 500 ns simulation. The distances between the tranilast-NADPH aromatic ring atoms C3-C5N (black), C4-C6N (red), C6-N1N (green), C7-C2N (blue), C8-C3N (orange) and C9-C4N (yellow) are shown as colored dots.

Figure S5. Effect of tranilast on cell viability and metabolism. a) The 570 nm absorbance readout in SH-SY5Y cells of coloured formazan product after treatment with a dose range of tranilast, quantified using the CellTiter® 96 Non-Radioactive Cell Proliferation Assay. b) Luminescence readout of SH-SY5Y intracellular ATP after treatment with a dose range of tranilast, quantified using the CellTiter-Glo® Luminescent Cell Viability Assay. All data is presented as mean \pm SEM, n=3 for each assay point, including assay controls (DMSO and cell free wells).

Figure S6. Expression changes measured by qRT-PCR of various genes of interest in the BH₄ pathway in RNA extracted from SH-SY5Y cells after 24 hour treatment with 100 μ M tranilast. Data was normalised vs ACTIN and GAPDH. Results are presented as mean \pm SEM (n=3). One-way ANOVA with Tukey's post-hoc test was performed (* = p \leq 0.05, **** = p \leq 0.0001).

Figure S7. Western blot images of (a) SPR, (b) STAT3 and (c) GCH1. Three replicates of untreated and 100 μ M tranilast treated protein extracts are shown in each gel. GAPDH (37 kb, blue band) was used as the loading control.

Figure S8. QQQ-MS quantification of the BH_4 standard for determining the limit of detection of the instrument and system parameters. The R^2 value for the linear regression curve was 0.989.