Supplementary Material

CO₂ capture by Supported Ionic Liquid Phase (SILP): Highlighting the role of the particle size

Ruben Santiago, Jesus Lemus, Daniel Hospital-Benito, Cristian Moya, Jorge Bedia, Noelia Alonso-Morales, Juan J. Rodriguez and Jose Palomar*

Chemical Engineering Department. Universidad Autónoma de Madrid. 28049 Madrid. Spain

Number of Pages: 6

Number of Figures: 4

Number of Tables: 2

List of Tables and Figures:

Table S 1: Isotherm models employed in the work	2
Table S 2: Additional Aspen Adsorption input required to	simulate in dynamic
mode	6

Figure S1: 77K N_2 adsorption/desorption isotherms of empty SiO ₂ of three
different sizes used in this work
Figure S2: TGA analysis of empty silica (SiO ₂) and SILP [bmim][acetate] of three
different particle sizes (SILP 500 – 9 μm). Analysis carried out with a temperature
increase of 10 $^{\circ}C\cdot min^{-1}$ under 50 $mL\cdot min^{-1}$ of $N_2.$
Figure S3: Comparison of CO ₂ sorption isotherms on SILP of different particle
sizes and on neat IL at 299 K
Figure S 4: CO ₂ adsorption isotherm of empty SiO ₂ -500 µm

Isotherm Model	Equation	R^2 coefficient
Langmuir	$w_{CO_2} = \frac{IP_1 \cdot p_{CO_2}}{1 + IP_2 \cdot p_{CO_2}}$	0.86-0.87
Freundlich	$w_{CO_2} = IP_1 \cdot p_{CO_2}^{IP_2}$	0.95-0.97
Langmuir-Freundlich	$w_{CO_2} = \frac{IP_1 \cdot IP_2 \cdot p_{CO_2}^{IP_3} \cdot e^{IP_4/T}}{1 + IP_5 \cdot p_{CO_2}^{IP_3} \cdot e^{IP_6/T}}$	> 0.99

Table S 1: Isotherm models employed in the work

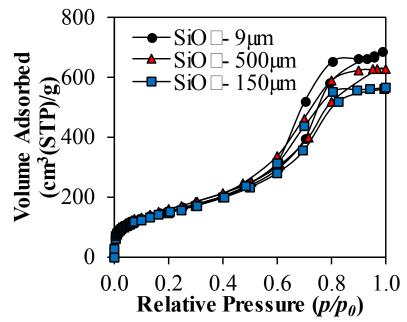
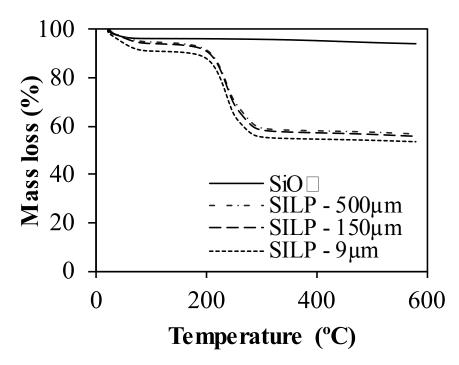
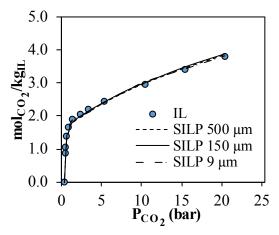




Figure S1: 77K N_2 adsorption/desorption isotherms of empty SiO₂ of three different sizes used in this work

Figure S2: TGA analysis of empty silica (SiO₂) and SILP [bmim][acetate] of three different particle sizes (SILP 500 – 9 μ m). Analysis carried out with a temperature increase of 10 °C·min⁻¹ under 50 mL·min⁻¹ of N₂.

Figure S3: Comparison of CO_2 sorption isotherms on SILP of different particle sizes and on neat IL at 299 K.

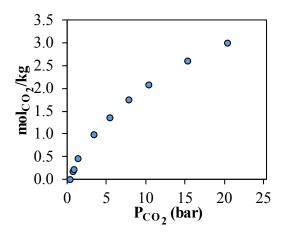


Figure S 4: CO_2 adsorption isotherm of empty SiO₂-500 μ m.

Bed characteristics	
Inter-particle porosity (m ³ void/m ³ bed)	0.5
Sorbent properties	
Intra-particle porosity (m ³ void/m ³ bed)	1.10-10
Sorbent solid bulk density (kg/m ³)	810
Sorbent particle radius (mm)	2.5.10-7-1.0.10-1

 Table S 2: Additional Aspen Adsorption input required to simulate in dynamic mode.

The inter-particle porosity was 0.5 in all cases due to the typical ranges in conventional adsorbents, such as zeolites or active carbons [1-3]. Moreover, the expected maximum inter-particle porosity considering spherical adsorbents is 0.6, so a value of 0.5 seems to be reasonably good for the estimations. The intra-particle porosity was $1 \cdot 10^{-10}$ because the pores of the SiO₂ particles are completely filled of IL (as demonstrated with the textural analysis by means of 77 K N₂ adsorption/desorption isotherms). In Aspen Adsorption, the solid bulk density is referred to the bed apparent density [1], which was experimentally calculated from the experimental fixed-bed tested. The sorbent particle radius was varied from $0.5 - 1000 \mu m$.

References

- Bhatt, T.S., et al., *Experimental and Modeling Analysis of Dual-Reflux Pressure Swing Adsorption Process*. Industrial & Engineering Chemistry Research, 2014. 53(34): p. 13448-13458.
- 2. Webley, P.A., et al., *A New Multi-bed Vacuum Swing Adsorption Cycle for CO2 Capture from Flue Gas Streams*. Energy Procedia, 2017. **114**: p. 2467-2480.
- Hauchhum, S., P. Mahanta, and J. De Wilde, *Capture of CO2 from Flue Gas onto Coconut Fibre-Based Activated Carbon and Zeolites in a Fixed Bed.* Vol. 110. 2015.