Supporting Information

For

Lone-Pair Electron Driven Thermoelectrics at Room Temperature

Saikat Mukhopadhyay^{1*}, Thomas L. Reinecke^{2*}

¹ NRC Research Associate at Naval Research Laboratory, Washington, DC 20375 ² Naval Research Laboratory, Washington, DC 20375

*Correspondence should be made to: SM:saikatrel@gmail.com, TLR:tom.reinecke@nrl.navy.mil

Stability: The structures and the corresponding phase diagrams of Tl_3TaSe_4 , Tl_3VS_4 , In_3TaSe_4 and In_3VS_4 were predicted using Materials Project¹. While Tl_3TaSe_4 and Tl_3VS_4 give stable ternary phase diagrams (as shown in Fig. S1), In_3TaSe_4 and In_3VS_4 are found to be thermodynamically unstable at 0K.

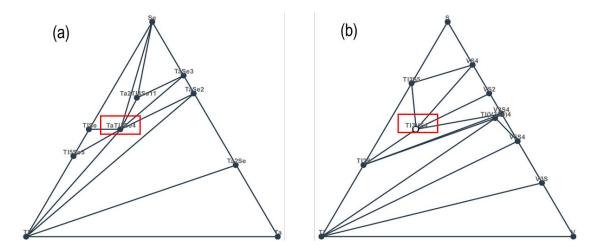


Figure S1: Phase diagrams for (a) Tl_3TaSe_4 and (b) Tl_3VS_4 from Materials Project ¹.

Mean Square Displacement (MSD): Atomic displacement (*u*) of the j^{th} atom in the l^{th} unit cell along Cartesian axis α at a given time *t* can be written as²:

$$u^{\alpha}(jl,t) = \left(\frac{\hbar}{2Nm_{j}}\right)^{1/2} \sum_{q,\nu} \left[\omega_{\nu}(q)^{-1/2} \left[\hat{a}_{\nu}(q)e^{(-i\omega_{\nu}(q)t)} + \hat{a}_{\nu}^{\dagger}(-q)e^{(i\omega_{\nu}(q)t)}\right]e^{(iq,r(jl))}e^{\alpha}_{\nu}(j,q)\right]$$

where *m* is the atomic mass, *N* is the number of unit cells, *q* is the wave vector, *v* is the branch index, $e_v^{\alpha}(j,q)$ is the polarization vector of the *j*th atom in the *l*th unit cell in mode v, r(jl) is the atomic position and $\omega_v(q)$ is the phonon frequency. \hat{a}_v and \hat{a}_v^{\dagger} are phonon creation and annihilation operators. The expectation value of the squared atomic displacement is calculated as:

$$\langle |u^{\alpha}(jl,t)|^{2} \rangle = \frac{\hbar}{2Nm_{j}} \sum_{\boldsymbol{q},\nu^{\dagger}} \omega_{\nu}(\boldsymbol{q})^{-1} (1 + 2n_{\nu}(\boldsymbol{q},T) |\boldsymbol{e}^{\alpha}_{\nu}(j,\boldsymbol{q})|^{2}$$

where the phonon population $n_{\nu}(q,T)$ is:

$$n_{\nu}(\boldsymbol{q},T) = \frac{1}{e^{\binom{\hbar\omega_{\nu}(\boldsymbol{q})}{k_{B}T}} - 1}}$$

The mean square displacements (MSD) were projected along the (111) direction as implemented in Phonopy³:

$$MSD = \frac{\hbar}{2Nm_j} \sum_{\boldsymbol{q},\boldsymbol{\nu}} \omega_{\boldsymbol{\nu}}(\boldsymbol{q})^{-1} (1 + 2n_{\boldsymbol{\nu}}(\boldsymbol{q},T) | n.\boldsymbol{e}_{\boldsymbol{\nu}}^{\alpha}(\boldsymbol{j},\boldsymbol{q}) |^2$$

We projected the MSDs along (111)-direction (Fig. S2) using a $31 \times 31 \times 31$ mesh-points, which were chosen based on rigorous convergence tests.

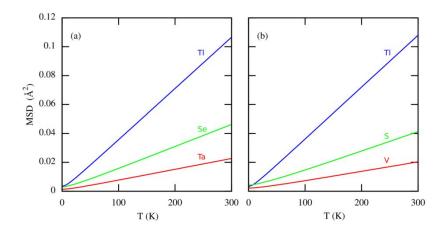


Figure S2: Mean square displacements of individual atoms for (a) Tl_3TaSe_4 and (b) Tl_3VS_4 at 300K.

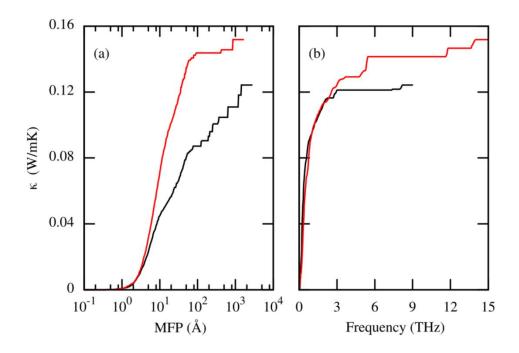


Figure S3: Accumulated κ for Tl_3TaSe_4 (black) and Tl_3VS_4 (red) at 300K as a function of (a) mean free path (MFP) and (b) phonon frequency.

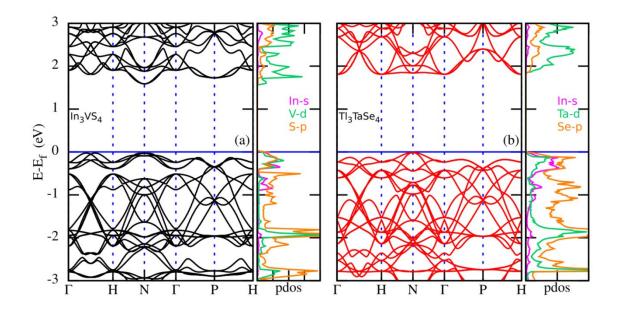


Figure S4: Electronic band structure and density of states projected on orbitals for (a) In_3VS_4 and (b) In_3TaSe_4 . The blue horizontal lines are the Fermi levels of the corresponding compounds.

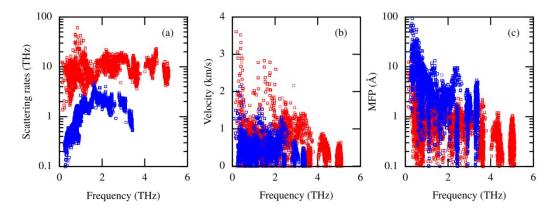


Figure S5: Comparison of lattice dynamical properties of In_3VS_4 (red) and Tl_3VSe_4 (blue): (a) scattering rates, (b) group velocity and (c) mean free path.

Thermal conductivity: Higher scattering rates in In_3XY_4 than those in Tl_3XY_4 (as shown in Fig. S4) give lower κ (<0.1 W/mK) In_3XY_4 . This was verified by calculating κ from almaBTE⁴ and Phono3py⁵ which give similar κ .

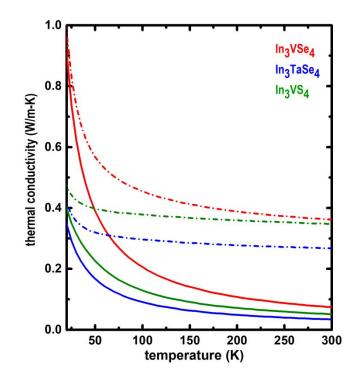


Figure S6: Thermal conductivity for In_3VSe_4 (red), In_3TaSe_4 (blue) and In_3VS_4 (green). The solid lines are κ - contributions from the phonon Boltzmann equation^{4,5} and the dashed are κ from the two channel model ⁶.

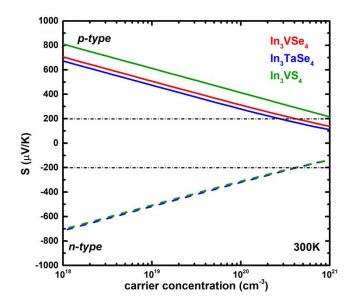


Figure S7: Calculated Seebeck coefficient of In_3VSe_4 , In_3TaSe_4 and In_3VS_4 as a function of carrier concentration at 300K.

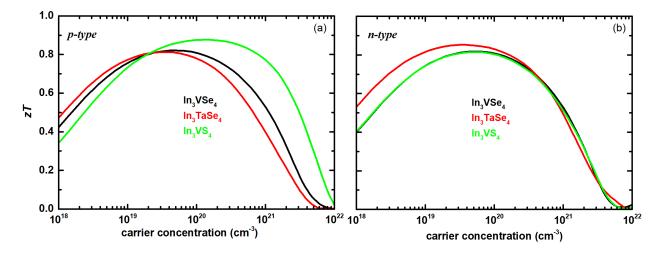


Figure S8: Thermoelectric properties of In_3VSe_4 , In_3TaSe_4 and In_3VS_4 as a function of carrier concentration at 300K when doped (a) p-type and (b) n-type. A relaxation time; $\tau = 9 \times 10^{-14}$ s was used for all the cases to be consistent with Tl_3XY_4 discussed in the main text.

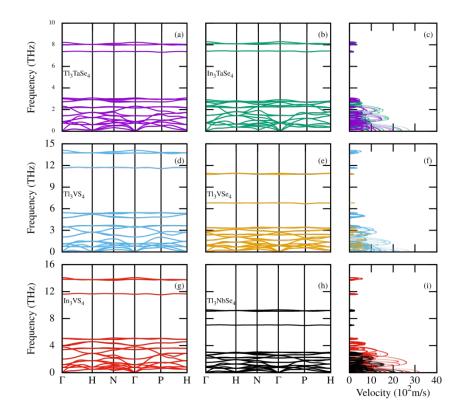


Figure S9: Comparative lattice dynamical properties in Z_3XY_4 (X=In/Tl, X=Ta/V/Nb and Y=S/Se) as a result of variation of Z (a-c), Y (d-f) and X, Y, Z (g-i) atoms

References

- Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A., Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, *APL Materials*. 2013, *1*, 011002 (1-11).
- (2) Wallace, D. C. *Thermodynamics of Crystal*. (Dover Publications, 1998).
- (3) Togo, A.; Tanaka, I., First Principles Phonon Calculations in Materials Science, Scr.
 Mater. 2015, 108, (1-5).
- (4) Carrete, J.; Vermeersch, B.; Katre, A.; van Roekeghem, A.; Wang, T.; Madsen, G. K. H.;

Mingo, N., almaBTE: A Solver of the Space–Time Dependent Boltzmann Transport Equation for Phonons in Structured Materials, *Comput. Phys. Commun.* **2017**, *220*, *(351-362)*

- (5) Togo, A., Chaput, L. & Tanaka, I. Distributions of Phonon Lifetimes in Brillouin Zones. *Phys. Rev. B.* 2015, 91, 094306 (1-31).
- Mukhopadhyay, S.; Parker, D. S.; Sales, B. C.; Puretzky, A. A.; McGuire, M. A.; Lindsay,
 L., Two-Channel Model for Ultralow Thermal Conductivity of Crystalline Tl₃VSe₄.,
 Science. 2018, *360*, (1455-1458).