Supporting Information

Ultra-sensitive sniff-cam for biofluorometric-imaging of

breath ethanol caused by metabolism of intestinal flora

Kenta Iitania,b,c, Koji Tomad, Takahiro Arakawad, and Kohji Mitsubayashic,d,*

^a Postdoctoral Research Fellow PD, Japan Society for the Promotion of Science, 5-3-1

Kojimatchi, Chiyoda-ku, Tokyo 102-0083, Japan

^b Department of Life Science and Medical Bioscience, Graduate School of Advanced Science

and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-

8480, Japan

^c Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-

5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

^d Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and

Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku,

Tokyo 101-0062, Japan

*corresponding author

Email: m.bdi@tmd.ac.jp

S-1

Table of contents:

Figure S-1 Time course of the mean intensity of ROI with various image analysis nethod
Figure S-2 Comparison of background noise and SN ratio between 5 different image analysis nethod
Figure S-3 Relationship between 90% response time and NAD ⁺ concentrationS-5
Table S-1 Preparation condition of NAD+/NADH mixture solution
Figure S-4 fluorescence and absorbance spectrum of NAD+/NADH mixture solutionsS-7
Figure S-5 Calibration curves under different concentration of NAD ⁺ solution
Figure S-6 Typical responses of the differential value with human breath
Table S-2 Comparison of previously developed Sniff-cam and newly developed oneS-10
References S-

Figure S-1. Time course of the mean intensity of ROI with various image analysis method. ΔI was calculated by averaging a mean intensity of ROI at 180 to 180 s after applying EtOH.

Figure S-2. Comparison of background noise and SN ratio between 5 different image analysis method.

Table S-1. Preparation condition of NAD+/NADH mixture solution

Molar ratio	NAD ⁺ (mM)	NADH (mM)
Control	0	0.1
1:1	0.1	0.1
10:1	1	0.1
100:1	10	0.1
1000:1	100	0.1

Figure S-3. The relationship between 90% response time and initial NAD⁺ concentration.

Figure S-4. (a) Fluorescence spectrum of NAD+/ NADH mixture solutions that were excited by 340 nm of UV light. These samples were prepared as shown in table S-1. (b) Relationship between ΔI_{fl} and NAD+ concentration in NAD+/NADH mixture solution. (c) The absorbance spectrum of the same sample to (a) and (b). (d) The relationship between absorbance at 340 nm and NAD+ concentration in NAD+/NADH mixture solution.

Figure S-5. Calibration curves of EtOH that were obtained by using a different concentration of NAD⁺ solutions. Dynamic range was changed depending on the concentration of the NAD⁺ solution.

Figure S-6. Typical responses of the differential value in to breath EtOH in the absence of alcohol consumption.

Table S-2. Comparison of previously developed Sniff-cam and newly developed one

	dynamic range	EtOH dose	peak max conc. in breath	ref.
	(ppm)	(g/kg bw)		
EtOH sniff-cam	1-150	0.4	127.7 ppm (EtOH, ALDH2[+]) 143.6 ppm (EtOH, ALDH2[-])	1
AcH sniff-cam	0.1-10	0.4	2.75 ± 0.38 ppm (AcH, ALDH2[+]) 8.64 ± 0.32 ppm (AcH, ALDH2[-])	2
switchable sniff-cam	0.1-1000 (EtOH) 0.2-10 (AcH)	0.4	145.3±13.5 ppm (EtOH, ALDH2[+] 1.7±0.2 ppm (AcH, ALDH2[+] 163.28.0 ppm (EtOH, ALDH2[-] 8.4±0.5 ppm (AcH, ALDH2[-])	3
This study	0.02-300	0 (without)	$116.2 \pm 35.7 \text{ ppb}$	

bw; body weight

References

- (1) Arakawa, T.; Sato, T.; Iitani, K.; Toma, K.; Mitsubayashi, K. Fluorometric Biosniffer Camera "Sniff-Cam" for Direct Imaging of Gaseous Ethanol in Breath and Transdermal Vapor. *Anal. Chem.* **2017**, *89* (8), 4495–4501. https://doi.org/10.1021/acs.analchem.6b04676.
- (2) Iitani, K.; Sato, T.; Naisierding, M.; Hayakawa, Y.; Toma, K.; Arakawa, T.; Mitsubayashi, K. Fluorometric Sniff-Cam (Gas-Imaging System) Utilizing Alcohol Dehydrogenase for Imaging Concentration Distribution of Acetaldehyde in Breath and Transdermal Vapor after Drinking. *Anal. Chem.* 2018, 90 (4), 2678–2685. https://doi.org/10.1021/acs.analchem.7b04474.
- (3) Iitani, K.; Hayakawa, Y.; Toma, K.; Arakawa, T.; Mitsubayashi, K. Switchable Sniff-Cam (Gas-Imaging System) Based on Redox Reactions of Alcohol Dehydrogenase for Ethanol and Acetaldehyde in Exhaled Breath. *Talanta* **2019**, *197* (December 2018), 249–256. https://doi.org/10.1016/j.talanta.2018.12.070.