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Note regarding electrochemical active area (ECSA) of ITOT catalyst 
Measuring ECSA is useful to estimate the electrochemically active surface area of Pt-
based catalysts, which is obtained from the reversible adsorption and desorption of 
hydrogen on Pt. During the measurement, Pt remains metallic phase. In the case of IrOx, 
however, the hydrogen desorption peak of the ECSA of an IrOx-carbon support catalyst 
rapidly disappeared as the Ir oxidation increased, as was reported in the previous work 
by our group members1. The same trend was also reported by Oh et al.,2 in which the Ir 
black showed an obvious hydrogen desorption peak in the ECSA curves, while after 
oxidation, it disappeared. Furthermore, once Ir is oxidized, it would not be 
electrochemically reduced during the CV operation. Hence, in this study, we are not 
able to provide ECSA-normalized specific activities of the IrOx based catalysts. 
    The experimental evidence for the above mentioned response to the comment is 
shown in Figure A. We measured CV to obtain ECSA value of our ITOT catalyst 
according the well-known method for ECSA evaluation of Pt catalysts. We recognize 
that the CV curves of the ITOT are quite different from that of conventional Pt-based 
catalysts. In our catalyst, we see no evident hydrogen desorption area in the CVs, and 
such results are very similar to the oxidized Ir catalysts discussed above1,2. Therefore, 
ECSA is not appropriate to evaluate the electrochemical activity of our ITOT catalyst 
because the Ir nanoparticles on the surface are easily oxidized during the CV cycling 
processes.  
    Based on the references and the obtained results, we conclude that ECSA is not 
suitable to evaluate ITOT catalysts.  
 

  
Figure S1. CV curves of the ITOT catalyst 
measured at room temperature (25 °C) in 
0.05 M H2SO4 electrolyte solution. 
 



 3 

Synthesis of ITOT catalyst 
IrCl3 is soluble in an ethylene glycol (EG)-water mixture solution. The solution amount 
of EG+H2O is 75 mL. Before the reaction, IrCl3 was pre-dispersed and sonicated for 
~1h to dissolve in the solvent. In this study, we used IrCl3·xH2O purchased from Tokyo 
Chemical Industry Co., Ltd. We have prepared ITOT catalyst with different IrOx 
loading (from 0.08 to 0.58 mg cm-2), which is controlled by changing the amount of 
IrCl3·xH2O (from 6 mg to 24 mg). The actual IrOx loading amounts were determined 
by the formula of (M2-M1)/S, where M1 and M2 are the mass of TOT mesh before and 
after the reflux process, S is the surface area of TOT mesh, for details, see in 
Experimental Section). The loading of IrOx = 0.58 mg cm-2 was chosen for further 
mechanism study.  
    Temperature 140 ℃ is the azeotropic temperature of the EG+H2O (6:4) mixture 
solution. Only in the azeotropic condition, the N2 gas can be involved in the reaction 
and reflux occurs. Actually, the temperature from 140 to 160 ℃ is feasible and we 
finally did at 140 ℃ in this experiment.  
    IrOx on the TOT mesh is the mixture of Ir nanometal particles and IrO2. In this 
research, we have obtained ITOT with different IrOx loadings (0.08, 0.33, 0.38, 0.44 
and 0.58 mg cm-2) and chosen IrOx = 0.58 mg cm-2 for further mechanism study.  

 

Note regarding the CV curves shape of ITOT catalyst  
We discuss about CV curve shape of our catalyst. If the catalyst is pure IrO2, the double-
layer capacitance should be very small3. In this case, no apparent Ir(III)/Ir(IV) waves 
were observed during the OER. This is consistent with the results for calcined ITOT 
catalyst, which is mainly IrOx. If the amount of IrOx is very low in the catalyst, such as 
film-coated IrOx(OH)y4, TiO2 supported IrOx5, and SnO2 supported IrOx6, the 
Ir(III)/Ir(IV) waves are not obvious and the double-layer capacitance would exist, just 
like our pristine ITOT catalyst. One reason for this phenomenon is that the amount of 
IrOx is very low, and IrOx is almost in the surface, suggesting that it is already oxidized 
at the initial state. Another reason is that these IrOx-based catalysts are Ir hydrated 
oxides, like IrOx(OH)y and the double-layer capacitance is derived from the OH species 
on the surface. The faint surface Ir(III)/Ir(IV) wave is already overlapped by this 
double-layer capacitance. The amount of IrOx in our pristine ITOT is very low and the 
surface OH species are very high, so the double-layer capacitance is remained while 
the Ir(III)/Ir(IV) wave is not obvious.  
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Supporting Figures 

 

 
Figure S2. Photos of Ti (a), and TOT (b) meshes; SEM images of Ti (c) and TOT (d 
and e) meshes. TiO2 nanorods were grown on the Ti mesh surfaces during the 
hydrothermal method to form a TOT mesh. 
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Figure S3. CV curves of the uncalcined ITOT catalysts with specified IrOx loading 
amounts. 
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Figure S4. Ti 2p XPS spectra (455~468 eV range) of the ITOT before and after 
calcination at 350 ˚C for a specific time. 
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Figure S5. XRD diagrams of the TOT catalyst, pristine ITOT catalyst and calcined 
ITOT catalyst. 
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Figure S6. Setup for the in situ electrochemical XAS experiments. 
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Figure S7. Relationship between the bulk rutile IrO2 structure and geometry of the 
trinuclear Ir3O14H16 clusters. 
 
  



 10 

 

 
 
Figure S8. HRTEM images of the (a) pristine ITOT catalyst after 700 CV-cycling test 
and (b) calcined ITOT catalyst. The insets of (a) and (b) are the distribution of particles 
size for the corresponding ITOT.  
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Figure S9. Nyquist plot of the ITOT catalyst before and after calcination at 350˚C for 
a specific time. Their corresponding equivalent circuits are provided in the inset. The 
first intercept value between the Nyquist plot with the x axis represents the ohmic 
impedance R0 of the measurement system. The difference between the intercepting 
values of the semicircular arc and the x axis generally means the charge transfer 
resistance Rct7-11. 
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Supporting Tables  
 
Table S1. Comparison of OER performance between the ITOT mesh and state-of-the-
art Ir(Ru)-based catalysts.  

Samples electrolyte 
Overpotential 
@ 10 mA cm-2 

(mV) 

EOER@10mA 
cm-2 

(V vs. RHE) 

Tafel 
Slope 

(mV dec-1) 
Reference 

IrOx@TiO2-
Ti mesh 

0.05 M 
H2SO4 200 1.43 48, 66 This work 

IrO2-
RuO2@Ru 

0.5 M 
H2SO4 

299~312 1.51-1.53 53.1-56.2 

 12 IrO2 317 1.55 57.3 
Ir3RuO3 293 1.53 56.5 

IrO2 (CM) 318 1.54 - 
RuO2 (CM) 289 1.53 - 

RuIr0.2O2 0.5 M 
H2SO4 >320 - - 13 

IrO2/NbTiO2 0.1 M 
HClO4 ~310 - - 14 

IrO2 (Ir−Ni) 0.5 M 
H2SO4 - 1.60 62 

15 

IrO2/Ir Bulk 0.5 M 
H2SO4 - 1.64 57 

Pt–Ir alloy 
nano-

catalysts 

0.5 M 
H2SO4 - 1.57-1.58 79-96 16 

IrOx in 
Stabilizing 

RuO2 

0.05 M 
H2SO4 356-405 1.62-1.68 - 17 

Ni−Ir nano-
cages 

0.05 M 
H2SO4 302 1.53-1.54 46.6-56.1 18 

Ir nano-
dendrites 

0.05 M 
H2SO4 280 1.63-1.72 55.6-57.7 2 

IrFe alloy/C 0.5 M 
HClO4 286-351 1.51-1.55 56-70 19 

Cry-Ir 0.1 M 
HClO4 - 1.51 76 20 

Aut-IrOx 0.5 M 
H2SO4 - 1.48 - 21 

leached-
Ir0.7Co0.3Ox 

0.5 M 
H2SO4 ≈260 1.56 40 22 

Ir−Ni mixed 
oxide films 

0.1 M 
HClO4 - 1.53-1.58 - 23 

dtf-Ir25Os75 0.1M 
HClO4 - ≈ 1.52 - 24 

Ir/M4N 0.5 M 
H2SO4 316-346 ≈ 1.52 - 25 

Pt/IrO2 0.5 M 
H2SO4 - 1.52-1.57 - 26 

IrxMo1−xOδ 0.1 M 
HClO4 - ≈ 1.54 57 27 

A-IrOx-B 0.1 M 
HClO4 283 1.554 - 28 

Ir2Sn1Ox-Ar 0.5 M 
H2SO4 - ≈ 1.54 49 29 
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Table S2. Values of relative content of OH species (θ) and the EOER of the ITOT 
catalysts after calcination for a specific time. The value of θ is calculated by the 

equation: θ =	 %&	'()*	)+()
%	,-	'()*	)+()

, which comes from the XPS curve area in Fig. 3c. The value 

of EOER is the potential at the 10 mA/cm-2 current density on the CV curves shown in 
Fig. 3b. The ŋ value can represent the concentration of OH species. The lower EOER 
value corresponds to a higher OER performance. The relevant contents of the 
concentration of the OH species and the EOER values are shown in Fig. 3d.  
 

Different calcined samples Relative percentage of OH species (θ) EOER@10mA cm-2 (V vs. RHE) 
Pristine ITOT 60% 1.428 

Calcined ITOT 10 min 45% 1.473 

Calcined ITOT 30 min 43% 1.487 

Calcined ITOT 60 min 41% 1.507 
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Table S3. Relative contents of different Ir valences states calculated from their peak 
area in Ir 4f XPS spectra. As shown in Fig. 3e, the relative content of Ir0 is calculated 

by the equation: ŋIr0= 	+(.	/0+1(-	)+()
2+	34	/0+1(	)+()

. Similarly, ŋIr Ⅲ = 	5+((6	/0+1(-	)+()
2+	34	/0+1(	)+()

, ŋIr Ⅳ

=	780(	/0+1(-	)+()
2+	34	/0+1(	)+()

. These ŋ values can represent the relative contents of the Ir valence 

states in different calcined samples, which are intuitively presented in Fig. 3f. 
 

Different calcined 

samples 
Relative content of Ir0 

ŋIr0 
Relative content of IrⅢ 

ŋIrⅢ 

Relative content of IrⅣ 

ŋIrⅣ 

Pristine ITOT 51% 32% 18% 

Calcined ITOT 10min 49% 29% 22% 

Calcined ITOT 30min 42% 28% 30% 

Calcined ITOT 60min 39% 23% 38% 
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Table S4. Values of relative percentage of OH species (θ) and the EOER of the ITOT 
meshes after CV-cycling tests. The value of θ is calculated by the equation: θ 

=	 %&	'()*	)+()
%	,-	'()*	)+()

, which comes from the curves area in Fig. 4c. The value of EOER is the 

potential at the 10 mA/cm-2 current density on the CV curves, shown in Fig. 4b. The 
relative contents of the OH species (%) obtained by the O 1s XPS curves and EOER@10 
mA/cm2 as a function of the provided CV-cycles are shown in Fig. 4d. 
 

Different CV cycles Relative percentage of OH species (θ) EOER@10mA cm-2 (V vs. RHE) 
After 5 cycles 60% 1.428 

After 60 cycles 55% 1.445 

After 120 cycles 55% 1.446 

After 300 cycles 54% 1.455 

After 700 cycles 53% 1.461 
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Table S5. Relative contents of different Ir valences calculated from their peak areas in 
Ir 4f XPS spectra. As shown in Fig. 4e, the relative content of Ir0 was calculated by the 

equation: ŋIr0= +(.	/0+1(-	)+()
9:;8(	/0+1(-	)+()

. Similarly, ŋIrⅢ=5+((6	/0+1(-	)+()
9:;8(	/0+1(-	)+()

, ŋIrⅣ= 780(	/0+1(-	)+()
9:;8(	/0+1(-	)+()

. 

These ŋ values represent the relative contents of different Ir valence states in the 
samples after the given CV cycles, which are presented in Fig. 4f.  
 

Different CV cycles Relative content of Ir0 

ŋIr0 
Relative content of IrⅢ 

ŋIrⅢ 

Relative content of IrⅣ 

ŋIrⅣ 

After 5 cycles 51% 33% 17% 

After 60 cycles 43% 33% 24% 

After 120 cycles 46% 31% 22% 

After 300 cycles 44% 34% 22% 

After 700 cycles 44% 35% 22% 

 
 
 
 
 
Table S6. Coordination environment of the Ir atoms in the computational models: 
number of different ligands around various Ir atoms. 
 
 -OH -OH2 Ir-O(-Ir) 
Ir3_a    
Ir1 4 0 2 
Ir2 2 1 3 
Ir3 2 1 3 
Ir3_b    
Ir1 3 1 2 
Ir2 2 1 3 
Ir3 3 0 3 
Ir3_c    
Ir1 4 0 2 
Ir2 2 1 3 
Ir3 2 1 3 
Ir3_d    
Ir1 3 1 2 
Ir2 2 1 3 
Ir3 3 0 3 
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Table S7. Mulliken charge of Ir atoms in the computational models. 
 
 Ir3_a Ir3_b Ir3_c Ir3_d 
Ir1 0.802 0.679 0.803 0.718 
Ir2 0.653 0.718 0.656 0.670 
Ir3 0.659 0.739 0.666 0.771 
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