A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties

Dongmei Wang^a, Yuxiao Zhang^a, Jiali Gao^a, Genwu Ge^{b*}, and Chunxia Li^{a*}

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China. E-mail: <u>cxli@zjnu.edu.cn</u>; <u>dmwang@zjnu.edu.cn</u>.

^b Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou, P. R. China.

Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄, C₂H₆ and C₃H₈ for **In/Cu-CBDA**, which should be converted to absolute loadings (*q*) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT} \quad (1)$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $1.13 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

In order to perform the IAST calculations, the single-component isotherm was fitted by the dual-site Langmuir-Freundlich (DSLF) adsorption model to correlate the pure-component equilibrium data and further predict the adsorption of mixtures. The DSLF model is described as:

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}} \quad (2)$$

Here *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg⁻¹), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

To investigate the separation of binary mixtures, the adsorption selectivity is defined by

$$S_{ij} = \frac{\frac{x_1}{x_2}}{\frac{y_1}{y_2}}$$
 (3)

 x_1 and x_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of x_1 and x_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

Figure S1 Single-crystal structure for **In/Cu-CBDA**: (a-b) ball-stick model of the 3D network viewed at different directions; (c-d) polyhedron and topology view of the net.

Figure S2 The topology of **In/Cu-CBDA** can be simplified as (3,4,4)-c net or 4-c net, respectively.

Figure S3 PXRD patterns for In/Cu-CBDA samples: simulated, as-synthesized, and activated.

Figure S4 PXRD patterns for **In/Cu-CBDA** samples immersed in different solvents are commendable consistent with the simulated pattern, which displays that the crystal structure can remain outstanding stable in different organic solvents.

Figure S5 TGA curve of In/Cu-CBDA.

Figure S6 C_3H_8 adsorption isotherm of In/Cu-CBDA after exposure to air three days at 298 K.

Figure S7 Isosteric heat of CO₂, CH₄, C₂H₆, and C₃H₈ for In/Cu-CBDA.

Compound	In/Cu-CBDA
Empirical formula	$C_{34}H_{20}Cu_{2}InN_{4}O_{20} \\$
Formula weight	1046.44
Temperature (K)	296.15 K
Wavelength (Å)	0.71073
Crystal system	Cubic
Space group	Im-3m
<i>a</i> (Å)	31.3315(5)
<i>b</i> (Å)	31.3315(5)
<i>c</i> (Å)	31.3315(5)
a (deg)	90
β (deg)	90
γ (deg)	90
Volume (Å ³)	30757.0(15)
Ζ	12
Dcalc (Mg/m ³)	0.678
F(000)	6228
Reflections collected	40660
Unique (R_{int})	0.0565
Goodness-of-fit on F^2	1.057
$R_1, wR_2 [I > 2\sigma(I)]$	0.0330, 0.0891
R_1 , wR_2 (all data)	0.0496, 0.1025

Table S1. Crystal data and structure refinement for In/Cu-CBDA.

The guest molecules were highly disordered and could not be modeled properly, thus the SQUEEZE routine of PLATON was applied to remove the contributions to the scattering from the solvent molecules. The reported refinements are of the guest-free structures using the *.hkp files produced using the SQUEEZE routine.

Table S2. Bond	lengths [Å]	and angles [°]	for In/Cu-CBDA.
----------------	-------------	----------------	-----------------

In(1)-O(2)#1	2.392(2)	O(1)#2-In(1)-O(2)#2	133.78(8)
In(1)-O(2)#2	2.392(2)	O(1)-In(1)-O(2)#1	86.48(4)
In(1)-O(2)#3	2.392(2)	O(1)#3-In(1)-O(2)#2	55.30(7)
In(1)-O(2)	2.392(2)	O(1)-In(1)-O(1)#2	133.78(8)
In(1)-O(1)#2	2.190(2)	O(1)#2-In(1)-O(1)#1	133.78(8)
In(1)-O(1)#3	2.190(2)	O(1)#3-In(1)-O(1)#2	126.86(7)
In(1)-O(1)#1	2.190(2)	O(1)-In(1)-O(1)#3	126.86(7)
In(1)-O(1)	2.190(2)	O(1)-In(1)-O(1)#1	78.48(11)
In(1)-C(8)#2	2.649(3)	O(1)#3-In(1)-O(1)#1	126.86(7)
In(1)-C(8)#1	2.649(3)	O(1)#3-In(1)-O(1)#2	78.48(11)
In(1)-C(8)#3	2.649(3)	O(1)-In(1)-O(1)#3	126.86(7)
Cu(2)-Cu(1)	2.6162(8)	O(1)-In(1)-O(1)#1	78.47(11)
Cu(2)-O(3)#4	1.9593(19)	O(1)#3-In(1)-O(1)#1	126.86(7)
Cu(2)-O(3)#5	1.9593(19)	O(1)-In(1)-C(8)#1	106.05(9)
Cu(2)-O(3)	1.9592(19)	O(1)#2-In(1)-C(8)#1	107.75(5)
Cu(2)-O(3)#6	1.9593(19)	O(1)#3-In(1)-C(8)#2	106.05(9)
Cu(2)-O(6)	2.141(4)	O(1)#3-In(1)-C(8)#3	27.58(8)
Cu(1)-O(5)	2.107(4)	O(1)#2-In(1)-C(8)#3	106.05(9)
Cu(1)-O(4)#5	1.9511(19)	O(1)#1-In(1)-C(8)#3	107.75(5)
Cu(1)-O(4)#6	1.9511(19)	O(1)-In(1)-C(8)#3	107.75(5)
Cu(1)-O(4)#4	1.9511(19)	O(1)#1-In(1)-C(8)#1	27.58(8)
Cu(1)-O(4)	1.9511(19)	O(1)#2-In(1)-C(8)#2	27.58(8)
O(2)-In(1)-O(2)#2	90.359(8)	O(1)#3-In(1)-C(8)#1	107.75(5)
O(2)-In(1)-O(2)#3	90.359(8)	O(1)-In(1)-C(8)#2	107.75(5)
O(2)#1-In(1)-O(2)#2	90.359(8)	O(1)#1-In(1)-C(8)#2	107.75(5)
O(2)#2-In(1)-O(2)#3	170.92(10)	C(8)#3-In(1)-C(8)#2	133.63(14)
O(2)#1-In(1)-O(2)#3	90.359(8)	C(8)#3-In(1)-C(8)#1	98.92(5)
O(2)-In(1)-O(2)#1	170.92(10)	C(8)#2-In(1)-C(8)#1	98.92(5)
O(2)-In(1)-C(8)#2	88.21(2)	O(3)#6-Cu(2)-Cu(1)	84.13(6)
O(2)#3-In(1)-C(8)#2	161.36(9)	O(3)#5-Cu(2)-Cu(1)	84.13(6)
O(2)-In(1)-C(8)#1	161.36(9)	O(3)#4-Cu(2)-Cu(1)	84.13(6)
O(2)#2-In(1)-C(8)#2	27.73(8)	O(3)-Cu(2)-Cu(1)	84.13(6)
O(2)-In(1)-C(8)#3	88.21(2)	O(3)#5-Cu(2)-O(3)#4	89.401(12)
O(2)#2-In(1)-C(8)#1	88.21(2)	O(3)#6-Cu(2)-O(3)#4	89.401(12)
O(2)#1-In(1)-C(8)#3	88.21(2)	O(3)#5-Cu(2)-O(3)#6	168.27(12)
O(2)#1-In(1)-C(8)#1	27.73(8)	O(3)-Cu(2)-O(3)#6	89.401(12)
O(2)#2-In(1)-C(8)#3	161.36(9)	O(3)-Cu(2)-O(3)#5	89.401(12)
O(2)#1-In(1)-C(8)#2	88.21(2)	O(3)-Cu(2)-O(3)#4	168.26(12)
O(2)#3-In(1)-C(8)#1	88.21(2)	O(3)-Cu(2)-O(6)	95.87(6)
O(2)#3-In(1)-C(8)#3	27.73(8)	O(3)#4-Cu(2)-O(6)	95.87(6)
O(1)#1-In(1)-O(2)#1	55.30(7)	O(3)#5-Cu(2)-O(6)	95.87(6)
O(1)-In(1)-O(2)	55.31(7)	O(3)#6-Cu(2)-O(6)	95.87(6)
O(1)#2-In(1)-O(2)#3	133.78(8)	O(6)-Cu(2)-Cu(1)	180.0

O(1)#1-In(1)-O(2)#2	86.48(4)	O(5)-Cu(1)-Cu(2)	180.0
O(1)-In(1)-O(2)#3	86.48(4)	O(4)#6-Cu(1)-Cu(2)	84.82(6)
O(1)#3-In(1)-O(2)#3	55.30(7)	O(4)#4-Cu(1)-Cu(2)	84.82(6)
O(1)#1-In(1)-O(2)#3	86.48(4)	O(4)-Cu(1)-Cu(2)	84.82(6)
O(1)#3-In(1)-O(2)#1	86.48(4)	O(4)#5-Cu(1)-Cu(2)	84.82(6)
O(1)#2-In(1)-O(2)#1	86.48(4)	O(4)#6-Cu(1)-O(5)	95.18(6)
O(1)#3-In(1)-O(2)	86.48(4)	O(4)#5-Cu(1)-O(5)	95.18(6)
O(1)-In(1)-O(2)#2	86.48(4)	O(4)#4-Cu(1)-O(5)	95.18(6)
O(1)#1-In(1)-O(2)	133.78(8)	O(4)-Cu(1)-O(5)	95.18(6)
O(1)#2-In(1)-O(2)	86.48(4)	O(4)#6-Cu(1)-O(4)	89.533(11)
O(1)#2-In(1)-O(2)#2	55.30(7)	O(4)#5-Cu(1)-O(4)	89.533(11)
O(1)-In(1)-O(2)#1	133.78(8)	O(4)#4-Cu(1)-O(4)	169.64(12)
O(1)#3-In(1)-O(2)#2	133.78(8)	O(4)#6-Cu(1)-O(4)#5	169.64(12)
O(1)-In(1)-O(1)#2	126.86(7)	O(4)#6-Cu(1)-O(4)#4	89.533(11)
O(1)#2-In(1)-O(1)#1	126.86(7)	O(4)#4-Cu(1)-O(4)#5	89.533(11)

Table S3 Summary of adsorption selectivity of many reported MOFs at 298 K and 1 bar. N.A.: Not Available. The articles do not list the data.

Compounds	CO ₂ /CH ₄	C ₂ H ₆ /CH ₄	C ₃ H ₈ /CH ₄	References
MOF-5	15.5			Environ. Sci. Technol.,
MOF-177	4.4	_		2010 , 44, 1820
UTSA-15	24.2			Inorg. Chem. 2011 , 50, 3442
UTSA-5	10.2			CrystEngComm. 2013 , 15, 5232
SiF6-2-Cu	33			
SiF6-2-Cu-i	140			Nature 2013 , 495, 80
SiF6-3-Zn	231			
UiO-66(Hf)	12] N.	A.	Inorg. Chem., 2016 , 55, 1134
ZJNU-59	7.9	· · · · · · · · · · · · · · · · · · ·		ACS Appl. Mater. Interfaces 2018 , 10, 20559
ZJNU-84	7.2			Inorg. Chem. Front., 2018 , 5, 1423–1431
{[Ln ₂ Ni(OAc) ₅ (H L)(L)]•solvent	16.8			Dalton Trans., 2018 , 47, 15344
UTSA-120a	370			J. Mater. Chem. A, 2019 , 7, 3128
$ \{ [Zn_2(bdc)_2(bpND \\ I)] \cdot 4DMF \}_n $	3.8-598	3.3-175	N.A.	Chem. Eur. J. 2016 , 22, 6059
ZJNU-63 (278K)	4.2	13.8	N.A.	Inorg. Chem. Front., 2018 , 5, 2227
UTSA-36a	NA	14.7	NA	Chem. Eur. J. 2012 , 18, 613
ZJU-61	IN.A.	49.5	IN.A.	Microporous Mesoporous Mater.

				2014 , 190, 32	
FIR-7a-ht		14.6	78.8	Chem. Commun. 2013 , 49, 11323	
PAF-40		15.2	48.2		
PAF-40-Fe		16.2	56	J. Mater. Chem. A 2014 , 2, 14536	
PAF-40-Mn		30.8	246		
JUC-100					
JUC-103		8-16 65-150		Chem. Eur. J. 2014, 20, 9073	
JUC-106					
FJI-C4	N.A.	39.7	293.4	ACS Appl. Mater. Interfaces 2016 , 8, 9777	
UPC-21(295K)		15.3	67	J. Mater. Chem. A, 2017 , 5, 1168	
JLU-Liu51		7.5	220	ACS Appl. Mater. Interfaces 2018 , 10, 31233	
UPC-100-In		26.6	186.4	L Mater Change A 2019 (
UPC-101-Al		8.9	37.2	J. Mater. Chem. A, 2018 , 6,	
UPC-102-Zr		13	42.5	24480	
eea-MOF-4	4.3	17	136	I Matar Cham A 2015 2 6276	
eea-MOF-5	7.3	22	156	J. Mater. Chem. A, 2015, 5, 6276	
JLU-Liu22	9.4	14.4	271.5	Chem. Commun., 2015 , 51, 15287	
JLU-Liu20	5.9	7.0	11.1	Cham Commun 2016 52 2222	
JLU-Liu21	6.9	7.0	99.2	Chem. Commun., 2010 , <i>32</i> , <i>3223</i>	
LIFM-26	36	46	202	Chem Eur. J. 2017, 23, 4060	
JLU-Liu7	6.9	50.4	128.5	Inorg. Chem. Front., 2017, 4, 139	
JLU-Liu37	3.8	11	206	Inorg Cham 2017 56 4141	
JLU-Liu38	5.6	15	98	morg. Chem. 201 7, 30, 4141	
JLU-Liu46	9.8	17	169	ACS Appl. Mater. Interfaces	
JLU-Liu47	10.4	17	168	2017 , 9, 32820	
UPC-33(273K)	33.12	6.64	151.5	Chem. Eur. J. 2018, 24, 2137	
In/Cu-CBDA (273K)	7.3	25.3	191.6	This work	

Table S4 The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO_2 , CH_4 , C_2H_6 and C_3H_8 for **In/Cu-CBDA** at 273 K.

adsorbate	q _{m1} [mmol g ⁻¹]	b ₁ [kPa ⁻¹]	n 1	q _{m2} [mmol g ⁻¹]	b ₂ [kPa ⁻¹]	n ₂	R ²
CO ₂	0.22692	0.06337	1.12513	31.85657	7.08133E-4	1.09585	0.9999
CH_4	0.01262	0.0107	2.4707	8.66083	5.36748E-4	1.03346	0.9999
C_2H_6	41.8043	0.0024	0.92504	0.27203	0.05038	0.59662	0.9999
C_3H_8	2.22427	0.03971	2.40812	5.49823	0.12193	0.56241	0.9999