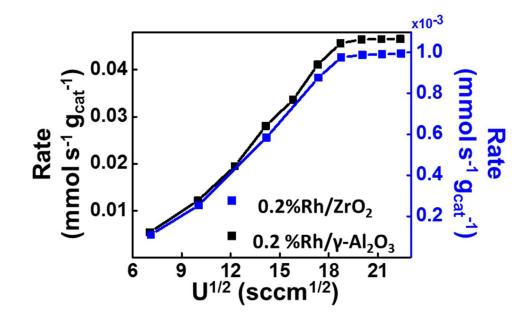
Atomically dispersed Rh active sites on oxide supports with controlled acidity for gas-phase halide-free methanol carbonylation to acetic acid


Ji Qi, Phillip Christopher

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States.

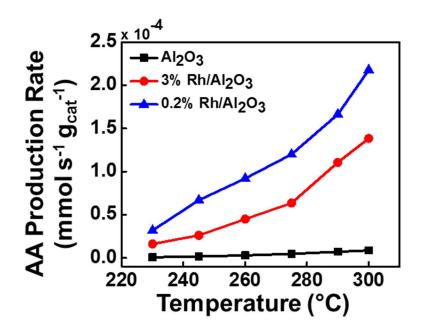

*Corresponding Author Email: <u>pchristopher@ucsb.edu</u>

Figure S1: Methanol consumption rates as function of superficial velocity

Figure S2: Acetic acid production rate during methanol carbonylation on γ -Al₂O₃, 3 wt% Rh/ γ -Al₂O₃ and 0.2 wt% Rh/ γ -Al₂O₃

Figure S1. Methanol consumption rates at 300 C and 33 mbar methanol and CO as a function of the square root of the superficial velocity. 0.2 wt% Rh/ γ -Al₂O₃ and 0.2 wt% Rh/ZrO₂ showed rates independent on the superficial velocity starting from 350 cm³ min⁻¹. A superficial velocity of 350 cm³ min⁻¹ (140 cm³ min⁻¹ of Ar to purge methanol and 210 cm³ min⁻¹ of 10% CO/90% Ar) was chosen for all kinetic experiments.

Figure S2. Production rate of acetic acid dur methanol carbonylation at 33 mbar methanol and 33 mbar CO as a function of temperature on γ -Al₂O₃, 3 wt% Rh/ γ -Al₂O₃ and 0.2 wt% Rh/ γ -Al₂O₃. Before reactivity experiments, catalysts were oxidized at 350 °C for 1 hour.