Supporting Information

Conformational Changes of Protein upon Encapsulation of Noble Metal Clusters: An Investigation by Hydrogen/Deuterium Exchange Mass Spectrometry

Debasmita Ghosh,¹ Sathish Kumar Mudedla,² Md Rabiul Islam,¹ Venkatesan Subramanian,² and Thalappil Pradeep^{1*}

¹DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India

²Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai- 600020

Number	Description	Page Number
Figure S1	UV-vis spectra of Lyz and Au ₈ @Lyz.	S2
Figure S2	MALDI MS spectra of Lyz after 24 h and 48 h of H/D exchange	S 3
Figure S3	IR spectra of heat-treated Lyz in D ₂ O	S4
Figure S4	Simulated structure of Lyz and Au ₈ -Lyz	S5

Table of Contents

Figure S1	UV-vis spectra of Lyz and Au ₈ @Lyz.	S2
Figure S2	MALDI MS spectra of Lyz after 24 h and 48 h of H/D exchange	S 3
Figure S3	IR spectra of heat-treated Lyz in D ₂ O	S 4
Figure S4	Simulated structure of Lyz and Au ₈ -Lyz	S5
Figure S5	Simulated data of breaking of H-bonds in Au ₈ -Lyz	S 6
Figure S6	Time dependent H/D exchange in 20% D ₂ O	S7
Figure S7	Time dependent H/D exchange in 50% D ₂ O	S 8
Figure S8	Time dependent H/D exchange in 100% D ₂ O	S 9

Figure S9	The mapped surface area of Lyz and Au ₈ -Lyz	S10
Figure S10	Interaction of Cu ²⁺ with Lyz	S11
Figure S11	Time dependent H/D exchange in 50% D ₂ O (Cu _n -Lyz)	S12
Figure S12	Time dependent H/D exchange in 100% D ₂ O(Cu _n -Lyz)	S13
Figure S13	XPS study of the Au ₈ @Lyz	S14
Figure S14	Interaction of Lyz with alkali metals	S15

Figure S1: UV-vis spectra of Lyz and Au₈@Lyz. Protein protected clusters showed almost featureless absorption spectrum unlike monolayer protected clusters; the later exhibit distinct features that can give information about the core formed. In the case of protein protected clusters, mostly ill-defined spectra have been reported with a peak near 280 nm corresponding to absorption of the protein.

Figure S2: MALDI MS spectra of Lyz after 24 h and 48 h of hydrogen/deuterium exchange. The spectra have been fitted.

Figure S3: IR spectrum (in the amide region) of Lyz in D_2O , after heating for 2 hours at 65°C. This shows the disappearance of the band near 1550 cm⁻¹.

Figure S4: Simulated structure (simulation for 150 ns) of Lyz (A) and Au₈-Lyz (B). (B) Covalent binding of Au^{1+} ions to cysteine of Lyz.

Figure S5: Breaking of H-bonds with time for Lyz and Au₈-Lyz. This simulated data show the decrease in H-bonds in Au₈-Lyz adducts than in native Lyz, with time. Table represents the calculated secondary structure of each of the components in the case of Lyz and Au₈-Lyz.

20%

Figure S6: Time-dependent H/D exchange MS of Lyz (A), and Au_n-Lyz (B) in 20% D₂O. Inset of (A) shows the expanded view of Lyz in +10 charge state and inset of (B) shows the expanded view of in +11 charge state of Au_n-Lyz. Comparison of both spectra revealed that in 20% D₂O, the mass shift is the same for Lyz and Au_n-Lyz.

50%

Figure S7: Time-dependent H/D exchange ESI MS of Lyz (A), and Au_n-Lyz (B) in 50% D₂O.

100%

Au_n-Lyz

Lyz

Figure S8: Time-dependent H/D exchange ESI MS of Lyz (A), and Au_n-Lyz (B) in 100% D₂O.

Figure S9: (A) Overlapped image of Lyz (green) and Au₈-Lyz (purple). (B) The mapped surface area of Lyz and Au₈-Lyz.

Figure S10: ESI MS of Cu_n-Lyz adduct; inset shows the expansion of +10 charge state. Interaction of Cu^{2+} with Lyz shows that a maximum of 8 Cu can attach with Lyz. Almost similar distribution of charges like in native Lyz suggests the difference in reactivity of Au and Cu with Lyz.

Figure S11: Time-dependent H/D exchange MS of Cu_n-Lyz in 50% D₂O. The inset shows the expanded view of Cu_n-Lyz in +10 charge state. A slow exchange like in native Lyz was observed in this case.

Figure S12: Time-dependent H/D exchange ESI MS of Cu_n -Lyz in 100% D₂O. ESI MS shows that the mass shift will be different for different charge states.

XPS of the cluster

Figure S13: XPS data of $Au_8@Lyz$ cluster shows the presence of Au (0) and Au (I) in the 4f region.

Figure S14: ESI MS of alkali metal attached Lyz adducts showing similar charge state distribution to the native protein in 100% D₂O.