Supporting Information: Compressing Θ-chain in slit geometry

Lei Liu, ${ }^{\dagger}$ Philip A. Pincus, ${ }^{\ddagger}$ and Changbong Hyeon ${ }^{*} \dagger$
\dagger Korea Institute for Advanced Study, Seoul 02455, Korea
\ddagger Physics and Material Department, University of California, Santa Barbara, California 93106, U. S. A.
E-mail: hyeoncb@kias.re.kr

The second virial coefficient of Lennard Jones particles in slit confinement

The second virial coefficient for hard-sphere (HS) system amounts to the volume of a spherical particle inaccessible to others. That is, the second virial coefficient for homogeneous hard sphere system with diameter $a, B_{2}^{\mathrm{HS}}=\frac{1}{2} \int d \mathbf{r}\left(1-e^{-u(\mathbf{r}) / k_{B} T}\right)$ with $u(\mathbf{r})=\infty$ for $r<a$ and 0 for $r \geq a$ is given as $B_{2}^{\mathrm{HS}}=(2 \pi / 3) a^{3}$. Geometrical confinement may be regarded as an external field applied to the particles, and it modifies the spatial distribution of a particle at \mathbf{r} with a factor $g(\mathbf{r}) \sim e^{-\beta E(\mathbf{r})}$, where $E(\mathbf{r})$ is the potential energy that the particle experiences in the presence of the external field. The second virial coefficient of hard sphere system in
slit confinement is given as ${ }^{1}$

$$
\begin{equation*}
B_{2}=-\frac{V}{2} \frac{\int d \mathbf{r}_{1} g\left(\mathbf{r}_{1}\right) \int d \mathbf{r}_{2} g\left(\mathbf{r}_{2}\right) f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}{\int d \mathbf{r}_{1} g\left(\mathbf{r}_{1}\right) \int d \mathbf{r}_{2} g\left(\mathbf{r}_{2}\right)} \tag{S1}
\end{equation*}
$$

In this expression, the Mayer function is $f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{-\beta u\left(r_{12}\right)}-1=H\left(\left|r_{1}-r_{2}\right|-a\right)-1$ for hard spheres where $H(\ldots)$ is the Heaviside step function. The integral $g\left(\mathbf{r}_{1}\right) \int d \mathbf{r}_{2} g\left(\mathbf{r}_{2}\right) f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ corresponds to the volume around a particle at \mathbf{r}_{1} that is inaccessible to other particles under the constraint that all the particles are confined between the slit. The integral $\int d \mathbf{r} g(\mathbf{r})=$ $A(D-a)$ denotes the volume accessible for a sphere of diameter a inside the slit of width D and area A. Since the inaccessible volume around the particle varies with its location along the z axis, B_{2} can be written in the following form.

$$
\begin{equation*}
B_{2}(D)=\frac{A D}{2} \frac{A \int_{-D / 2+a / 2}^{D / 2-a / 2} d z V(z)}{A^{2}(D-a)^{2}} \tag{S2}
\end{equation*}
$$

Next, in order to evaluate the second virial coefficient, a system of Lennard-Jones particles may be approximated by a square well potential of depth ϵ and width δ (see Fig.??A). In free space, the inaccessible volume calculated above for hard sphere system is adjusted by a factor $\psi(\epsilon, \delta)$ as

$$
\begin{align*}
\int d \mathbf{r}\left(1-e^{-\beta u(\mathbf{r})}\right) & =4 \pi \int_{0}^{a} r^{2} d r+4 \pi \int_{a}^{a+\delta} r^{2} d r\left(1-e^{\beta \epsilon}\right) \\
& =\frac{4 \pi}{3} a^{3} \underbrace{\left[1+\left(1-e^{\beta \epsilon}\right)\left(\left(1+\frac{\delta}{a}\right)^{3}-1\right)\right]}_{\equiv \psi(\epsilon, \delta)} \tag{S3}
\end{align*}
$$

The effective volume element $V(z)$ for LJ in Eq.S2 is calculated as (see Fig. 4B):
(i) $a \leq D \leq 2 a$,

$$
\begin{aligned}
V_{\mathrm{LJ}}^{<}(z) & =\pi \int_{-\frac{D}{2}+\frac{a}{2}-z}^{\frac{D}{2}-\frac{a}{2}-z} d y\left(a^{2}-y^{2}\right)+\pi\left(1-e^{\beta \epsilon}\right) \int_{-\frac{D}{2}+\frac{a}{2}-z}^{\frac{D}{2}-\frac{a}{2}-z} d y\left[(a+\delta)^{2}-y^{2}\right] \\
& -\pi\left(1-e^{\beta \epsilon}\right) \int_{-\frac{D}{2}+\frac{a}{2}-z}^{\frac{D}{2}-\frac{a}{2}-z} d y\left(a^{2}-y^{2}\right)
\end{aligned}
$$

(ii) $D \geq 2 a$,

- For $\frac{D}{2}-\frac{3 a}{2} \leq z \leq \frac{D}{2}-\frac{a}{2}$

$$
V_{\mathrm{LJ}}^{>, 1}(z)=\pi e^{\beta \epsilon} \int_{-a}^{D / 2-a / 2-z} d y\left(a^{2}-y^{2}\right)+\pi\left(1-e^{\beta \epsilon}\right) \int_{-(a+\delta)}^{D / 2-a / 2-z} d y\left((a+\delta)^{2}-y^{2}\right)
$$

- For $-\frac{D}{2}+\frac{3 a}{2} \leq z \leq \frac{D}{2}-\frac{3 a}{2}$

$$
\begin{aligned}
V_{\mathrm{LJ}}^{>2}(z) & =\pi e^{\beta \epsilon} \int_{-a}^{a} d y\left(a^{2}-y^{2}\right)+\pi\left(1-e^{\beta \epsilon}\right) \int_{-a-\delta}^{a+\delta} d y\left((a+\delta)^{2}-y^{2}\right) \\
& =\frac{4 \pi}{3} a^{3} \psi(\epsilon, \delta)
\end{aligned}
$$

- For $-\frac{D}{2}+\frac{a}{2} \leq z \leq-\frac{D}{2}+\frac{3 a}{2}$

$$
V_{\mathrm{LJ}}^{>, 3}(z)=\pi e^{\beta \epsilon} \int_{-D / 2+a / 2-z}^{a} d y\left(a^{2}-y^{2}\right)+\pi\left(1-e^{\beta \epsilon}\right) \int_{-D / 2+a / 2-z}^{a+\delta} d y\left((a+\delta)^{2}-y^{2}\right)
$$

Then, $B_{2}(D)$ for LJ systems is obtained by calculating $B_{2}^{\mathrm{LJ}}(D)=\frac{D}{2(D-a)^{2}} \int_{-D / 2+a / 2}^{D / 2-a / 2} V_{\mathrm{LJ}}(z) d z$.
Eq.S2 is evaluated with the explicit forms of $V_{\mathrm{LJ}}^{<}(z)$ and $V_{\mathrm{LJ}}^{>, i}(z)$ given above:
(i) For $a \leq D \leq 2 a$

$$
\begin{equation*}
B_{2}^{\mathrm{LJ}}(D)=\frac{D}{2(D-a)^{2}} \int_{-D / 2+a / 2}^{D / 2-a / 2} d z V_{\mathrm{LJ}}^{<}(z) \tag{S4}
\end{equation*}
$$

(ii) For $D \geq 2 a$

$$
\begin{equation*}
B_{2}^{\mathrm{LJ}}(D)=\frac{D}{2(D-a)^{2}}\left(\int_{-D / 2+a / 2}^{-D / 2+3 a / 2} d z V_{\mathrm{LJ}}^{>, 1}(z)+\int_{-D / 2+3 a / 2}^{D / 2-3 a / 2} V_{\mathrm{LJ}}^{>, 2}(z) d z+\int_{D / 2-3 a / 2}^{D / 2-a / 2} V_{\mathrm{LJ}}^{>, 3}(z) d z\right) \tag{S5}
\end{equation*}
$$

These enable obtaining the expression given in Eq. 20.
The condition of either $\psi(\epsilon, \delta) \rightarrow 1\left(\epsilon=0\right.$ or $\left.e^{\beta \epsilon}=1\right)$ or $\delta / a=0$ reduces the second virial coefficient of LJ system into that of hard-sphere systems: ${ }^{2}$

$$
B_{2}^{\mathrm{LJ}}(D) \rightarrow B_{2}^{\mathrm{HS}}(D)= \begin{cases}\frac{\pi a^{3}(D / a)}{2}\left[\frac{5}{6}+\frac{1}{3} \frac{D}{a}-\frac{1}{6}\left(\frac{D}{a}\right)^{2}\right] & (a<D \leq 2 a) \tag{S6}\\ \frac{\pi a^{3}(D / a)}{2(D / a-1)^{2}}\left[\frac{4}{3} \frac{D}{a}-\frac{11}{6}\right] & (D \geq 2 a)\end{cases}
$$

$B_{2}^{\mathrm{HS}}(D)$ changes its value from $B_{2}^{\mathrm{HS}}(D \rightarrow \infty)=(2 \pi / 3) a^{3}$ in free space to $B_{2}^{\mathrm{HS}}(D \rightarrow a)=$ $(\pi / 2) a^{3}$ in tightly confined space. It is interesting to note that both $B_{2}^{\mathrm{HS}}(D)$ and $B_{2}^{\mathrm{LJ}}(D)$ display non-monotonic variation with D, maximized at $D \approx 2 a$ (see black curve in Fig. 4C).

References

(1) Krekelberg, W. P.; Mahynski, N. A.; Shen, V. K. J. Chem. Phys. 2019, 150, 044704.
(2) Yang, J. H.; Schultz, A. J.; Errington, J. R.; Kofke, D. A. Mol. Phys. 2015, 113, 11791189.

