Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes

Quan Manh Phung,^{†,‡} Carlos Martín-Fernández,[†] Jeremy N. Harvey,[†] and Milica Feldt^{*,†,¶}

†Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium

‡Current address: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan

¶Current address: Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany

E-mail: mfeldt@uni-muenster.de

Supporting Information Available

Computational Methodology

Here we describe the computational methodology used in this study.

The structures **1-10** were optimized using BP86-D3BJ/def2-TZVP, whereas structures **11** and **12** were taken from previous studies.^{1,2} Using these optimized structures, we performed a series of single-point DFT calculations employing different functionals (BP86, B3LYP, TPSS, TPSSh, PBE0, M06, MN15, S12g, B97-D, OPBE and OLYP)³⁻¹⁵ and the def2-TZVP basis set on all atoms.^{16,17} The D3BJ dispersion correction^{18,19} has been used in all DFT calculations.

The "reference" data were obtained with our recently proposed CASPT2/CC approach.^{20,21} In this approach, dynamical correlation of valence electrons was described by CASPT2, whereas correlation of iron semi-core electrons (3s and 3p) was calculated with CCSD(T) with small basis set (cc-pwCVTZ-DK on Fe and minao on all other atoms). In the CASPT2 calculations, we used an extensive basis set, denoted as awC5Z/aTZ: aug-cc-pwCV5Z-DK for Fe, cc-pVTZ-DK for H, and aug-cc-pVTZ-DK for other ligand atoms.

In all CASSCF calculations, we used "standard" active spaces employed in a previous work.^{1,21} The active spaces consist of one σ orbital describing the bonds between Fe and the equatorial coordinating ligand atoms, five Fe 3d, and three O 2p orbitals. To describe the 'double-shell' effect, three O 2p' as well as three(four) Fe 3d' were also included for the triplet(quintet) state. The resulting active spaces consist of 15 and 16 active orbitals for the triplet and quintet states, respectively. In **9**, we added one more sulfur $3p_z$ orbital since it strongly mixes with σ_{z^2} . The active spaces and the natural orbital occupation numbers (NOONs) can be found in the Table S2.

Two different versions of local coupled cluster have been used: local coupled cluster with singles, doubles and non-iterative triples LUCCSD(T0),^{22–25} as implemented in Molpro program package, and domain-based pair natural orbitals DLPNO-CCSD(T)^{26–30} as imple-

mented in ORCA. In all local coupled cluster calculations, augmented triple zeta basis sets were used for Fe=O (aug-cc-pwCVTZ^{31,32} for Fe and aug-cc-pVTZ-DK³³ for O) and augmented double zeta³³ for all other atoms, except for H where a double zeta basis set without augmented functions was used. Density fitting approximations were used throughout in LUCCSD(T0). In the case of Coulomb and exchange fitting, the aug-cc-pVTZ/JKFIT³⁴ auxiliary basis set was used for all atoms except Fe where the def2-QZVP/JKFIT basis set ³⁵ was applied. For the correlation fitting, the aug-cc-pVTZ/MP2FIT³⁶ basis set was used for all atoms except for except VTZ/MP2FIT³⁷ was applied. In the DLPNO-CCSD(T) calculations, the RIJCOSX approximation^{38,39} was used. The RI-J auxiliary basis was automatically constructed from the orbitals basis set using the AutoAux keyword.⁴⁰ For the correlation fitting, the same basis set as in the case of the LUCCSD(T0) calculations was used.

All CASPT2 calculations have been performed using Molcas.⁴¹ The ORCA program package⁴² was used in the case of UKS-UCCSD(T) and DLPNO-CCSD(T) calculations. Molpro 2019⁴³ was used for LUCCSD(T0) and LUCCSD(T0)-*hotspot* calculations and CCSD(T) calculations for 3s3p correction. Most of the DFT (BP86, B3LYP, TPSS, TPSSh, PBE0, M06, MN15, S12g, B97-D) calculations have been carried out using TURBOMOLE v8.0 software,⁴⁴ while some of the DFT (OPBE, OLYP and MN15) calculations were performed using Gaussian 16.⁴⁵

CASPT2/CC Results

	CASPT2	$+3s3p(CC)^a$	$+ ZPE^b$	+thermal ^b	$+ COSMO^{c}$	ΔG°
1	7.8	2.5	-1.7	-1.3	1.0	8.3
2	5.7	2.5	-1.5	-1.2	1.8	7.3
3	4.0	2.6	-2.1	-1.4	2.2	5.4
4	9.8	2.2	-0.9	-1.3	-0.5	9.3
5_{ax}	8.4	2.1	-0.7	-1.5	2.3	10.6
5_{eq}	6.9	2.3	-1.0	-2.4	2.4	8.2
$6_{\rm ax}$	1.8	2.1	-1.2	-1.1	2.8	4.5
6_{eq}	3.5	2.1	-1.3	-1.2	1.2	4.2
7	27.9	1.7	-2.0	-2.5	0.5	25.6
8	14.9	2.2	-0.8	-0.5	-2.4	13.4

Table S1: CASPT2 spin gap $\Delta E_{\text{gas}}(E_{\text{quintet}} - E_{\text{triplet}})$ and the 3s3p, ZPE, thermal, and COSMO (acetonitrile) corrections to it. All values in kcal/mol.

 $^a\mathrm{Calculated}$ using UCCSD(T)/ROHF with small basis set. $^b\mathrm{Taken}$ from the calculations at BP86-D3BJ/def2-TZVP level of theory. $^c\mathrm{Solvation}$ correction obtained from BP86-D3BJ/def2-TZVP calculations with acetonitrile.

Figure S1: Active space used in CASPT2/CC calculations on the example of complex ${\bf 9}$ in the quintet state.

Complex	π_{xz}	π_{yz}	σ_{z^2}	d_{xy}	π^*_{xz}	π^*_{uz}	$d_{x^2 - y^2}$	$\sigma_{z^2}^*$
³ 1	1.91	1.91	1.88	1.96	1.07	1.07	0.05	0.12
$^{5}1$	1.92	1.92	1.82	1.00	1.05	1.06	1.00	0.18
$^{3}2$	1.91	1.91	1.88	1.96	1.07	1.06	0.06	0.13
$^{5}2$	1.92	1.93	1.81	1.00	1.06	1.05	1.00	0.19
³ 3	1.90	1.90	1.88	1.96	1.07	1.07	0.06	0.12
53	1.92	1.92	1.81	1.00	1.05	1.05	1.00	0.19
$^{3}4$	1.97	1.97	1.89	1.91	1.06	1.06	0.04	0.12
$^{5}4$	1.92	1.93	1.81	1.00	1.05	1.05	1.00	0.19
$^{3}5_{\mathrm{ax}}$	1.90	1.90	1.88	1.97	1.07	1.07	0.04	0.12
$^{5}5_{\mathrm{ax}}$	1.92	1.92	1.81	1.00	1.05	1.06	1.00	0.19
$^{3}5_{eq}$	1.91	1.92	1.89	1.97	1.06	1.06	0.04	0.11
$^{5}5_{eq}$	1.93	1.93	1.80	1.00	1.05	1.05	1.00	0.19
$^{3}6_{\mathrm{ax}}$	1.91	1.91	1.88	1.97	1.06	1.07	0.04	0.12
${}^{5}6_{\mathrm{ax}}$	1.93	1.92	1.81	1.00	1.05	1.06	1.00	0.19
$^{3}6_{eq}$	1.91	1.91	1.88	1.97	1.07	1.06	0.04	0.12
${}^{5}6_{eq}$	1.93	1.92	1.80	1.00	1.05	1.05	1.00	0.20
$^{3}7$	1.91	1.91	1.89	1.96	1.06	1.06	0.05	0.11
$^{5}7$	1.90	1.90	1.93	1.07	1.07	0.99	0.07	1.03
$^{3}8$	1.92	1.92	1.87	1.05	1.05	1.96	0.05	0.13
⁵ 8	1.90	1.90	1.93	0.99	1.07	1.07	1.03	0.07
³ 9	1.90	1.90	1.89	1.96	1.07	1.07	0.06	0.12
$^{5}9$	1.91	1.92	1.82	1.00	1.06	1.06	1.00	0.19
$^{3}10$	1.91	1.91	1.88	1.96	1.06	1.07	0.05	0.12
$^{5}10$	1.93	1.92	1.81	1.00	1.06	1.05	1.00	0.19

 Table S2: Occupation Numbers of Some Important Natural Orbitals

DFT Results

	CASPT2/CC	BP86	B3LYP	TPSS	TPSSh	PBE0	M06	MN15	S12g	B97-D	OPBE	OLYP
1	10.2	10.6	1.3	14.4	9.6	0.3	-6.1	6.4	3.7	5.4	0.5	-0.3
2	8.1	9.2	0.2	13.1	8.5	-1.1	-8.2	5.9	2.1	3.7	-1.5	-2.2
3	6.6	6.5	-3.0	10.6	5.7	-4.1	-11.5	1.7	-1.2	0.1	-4.5	-5.3
4	11.9	22.2	9.4	22.9	16.9	6.7	-3.1	9.4	13.3	8.8	18.1	15.7
5_{ax}	10.5	12.4	2.2	16.2	11.4	1.8	-6.4	6.7	4.3	3.5	3.5	1.1
5_{eq}	9.1	12.0	1.0	15.7	10.6	0.9	-9.4	5.7	3.5	3.7	3.5	0.8
$6_{\rm ax}$	4.0	9.3	1.5	12.0	7.9	-1.9	-11.7	1.8	-0.9	-3.3	3.9	3.2
6_{eq}	5.6	12.4	3.5	14.6	10.1	0.0	-9.9	3.5	2.7	-0.1	7.2	6.3
7	29.6	27.0	20.7	30.1	27.6	21.1	17.6	28.6	19.7	20.7	20.4	17.9
8	17.1	18.5	14.2	19.4	16.9	11.5	4.2	12.0	14.8	12.9	16.7	16.6
mear	n AE	3.3	6.2	5.6	2.0	7.8	15.7	3.1	5.4	5.7	6.0	6.8
max	AE	10.2	9.7	10.9	5.0	10.7	18.5	5.1	9.8	8.8	11.1	11.9
\min	AE	0.2	2.1	0.5	0.1	5.3	12.0	1.0	1.4	3.2	0.1	0.4
SD		3.8	3.2	3.1	2.4	2.0	2.1	1.3	3.1	1.7	5.9	6.0
\mathbf{R}^2		0.74	0.82	0.84	0.90	0.93	0.98	0.97	0.82	0.95	0.55	0.52

Table S3: ΔE_{gas} calculated with different DFT functionals compared to our best electronic CASPT2/CC results. All values in kcal/mol

Table S4: ΔE_{gas} calculated with different DFT functionals compared to our best electronic CASPT2/CC results. All values in kcal/mol.

	Linear fit	\mathbb{R}^2
BP86	-2.53 + 0.99 * x	0.74
B3LYP	6.64 + 0.91 * x	0.82
TPSS	-8.26 + 1.16 * x	0.84
TPSSh	-2.48 + 1.10 * x	0.90
PBE0	7.99 + 0.93 * x	0.93
M06	14.87 + 0.81 * x	0.98
MN15	3.66 + 0.93 * x	0.97
S12g	5.46 + 0.94 * x	0.82
B97-D	5.59 + 1.02 * x	0.95
OPBE	6.99 + 0.63 * x	0.55
OLYP	7.85 + 0.64 * x	0.52

Local Coupled-Cluster Results

Table S5: Local coupled-cluster energies (ΔE_{gas}) using different schemes in the case of LUCCSD(T0) (Pipek-Mezey localization (pipek), intrinsic bond orbitals (ibo) and ibos in combinations with *hotspot* approach) and different parameters in the case of DLPNO-CCSD(T). Statistical analyses of local coupled-cluster results compared to CASPT2/CC is also present (mean absolute error (AE), maximal AE, minimal AE, standard deviation (SD) and R^2). All values in kcal/mol.

	CASPT2/CC		LUCC	SD(T)	D	DLPNO-CCSD(T)		
		pipek	ibo	ibo- <i>hotspot</i>	LoosePNO	NormalPNO	TightPNO	
1	10.2	9.9	16.5	11.0	3.0	1.4	2.4	
2	8.1	13.6	19.3	10.2	1.4	-0.3		
3	6.6	6.3	10.7	6.6	1.7	-3.2	-2.2	
4	11.9	17.7	23.4	18.7	2.8	3.5		
5_{ax}	10.5	15.1	17.8	16.4	3.0	3.9	4.4	
5_{eq}	9.1	13.6	12.8	13.2	0.3	1.6	2.5	
$6_{\rm ax}$	4.0	3.3	11.1	10.5	-6.3	-3.5		
6_{eq}	5.6	8.9	12.3	12.1	-4.7	-1.4		
7	29.6	47.4	40.0	38.4	19.4	25.7		
8	17.1	32.5	31.5	24.7	2.8	9.1	10.0	
mea	n AE	5.8	8.3	4.9	8.9	7.6	_	
max	x AE	17.8	14.5	8.9	14.3	9.8	-	
min	AE	0.3	3.7	0.0	4.9	3.8	-	
SD		6.3	3.5	3.0	2.6	1.6	-	
\mathbf{R}^2		0.95	0.90	0.92	0.88	0.98	-	

Table S6: Local coupled-cluster free energies ($\Delta G_{acetonitrile}$) using different schemes in the case of LUCCSD(T0) (Pipek-Mezey localization (pipek), intrinsic bond orbitals (ibo) and ibos in combinations with *hotspot* approach) and different parameters in the case of DLPNO-CCSD(T). Statistical analyses of local coupled-cluster results compared to CASPT2/CC is also present (mean absolute error (AE), maximal AE, minimal AE, standard deviation (SD) and R^2). All values in kcal/mol

	CASPT2/CC		LUCC	SD(T)	D	LPNO-CCSD(Г)
		pipek	nbo	nbo-hotspot	LoosePNO	NormalPNO	TightPNO
1	8.3	8.0	14.5	9.1	1.1	-0.5	0.5
2	7.3	12.7	18.4	9.3	0.5	-1.2	
3	5.4	5.1	9.4	5.3	0.4	-4.5	-3.4
4	9.2	15.0	20.7	16.0	0.1	0.8	
5_{ax}	10.6	15.2	17.9	16.5	3.1	4.0	4.5
5_{eq}	8.2	12.6	11.8	12.3	-0.7	0.6	1.5
$6_{\rm ax}$	4.5	3.9	11.7	11.1	-5.8	-2.9	
6_{eq}	4.2	7.5	10.9	10.7	-6.1	-2.8	
7	25.6	43.4	36.0	34.4	15.4	21.7	
8	13.4	28.8	27.9	21.1	-0.9	5.5	6.3
mea	n AE	5.8	8.3	49	8.9	76	_
max	AE	17.8	14.5	8.9	14.3	9.8	-
\min	AE	0.3	3.7	0.0	4.9	3.8	_
SD		6.3	3.5	3.0	2.6	1.6	-
\mathbf{R}^2		0.93	0.87	0.90	0.83	0.98	-

 a Corrections have been obtained from BP86-D3BJ calculations with def2-TZVP basis set. Solvent effects have been calculated using COSMO with acetonitrile as solvent.

Figure S2: Absolute DLPNO-CCSD(T) energies using different parameters on the example of complex **5**.

		LUCCSD(T)		DLPNO-CCSD(T)
	ibo	ibo- <i>hotspot</i>	pipek	NormalPNO
$^{5}1$	0.04630	0.04005	0.04525	0.01610
$^{3}1$	0.05126	0.04187	0.05088	0.01402
$^{5}2$	0.04162	0.03601	0.03995	0.01533
$^{3}2$	0.04610	0.03833	0.04481	0.01344
$^{5}3$	0.05391	0.04552	0.05524	0.01672
$^{3}3$	0.05824	0.04669	0.06137	0.01498
$^{5}4$	0.04079	0.03432	0.03953	0.01502
$^{3}4$	0.04248	0.03478	0.04451	0.01294
${}^{5}5_{\mathrm{ax}}$	0.04415	0.03799	0.04271	0.01598
${}^{3}5_{\mathrm{ax}}$	0.04565	0.03848	0.04579	0.01362
${}^{5}5_{eq}$	0.04340	0.03788	0.04324	0.01567
${}^{3}5_{eq}$	0.04697	0.03907	0.04674	0.01351
${}^{5}6_{ax}$	0.03856	0.03401	0.03838	0.01512
${}^{3}6_{ax}$	0.04013	0.03434	0.04093	0.01288
${}^{5}6_{eq}$	0.03845	0.03401	0.03833	0.01493
${}^{3}6_{eq}$	0.04167	0.03495	0.04207	0.01279
57^{-1}	0.04060	0.03599	0.04150	0.01492
$^{3}7$	0.04165	0.03545	0.04319	0.01313
$^{5}8$	0.04042	0.03514	0.04054	0.01524
$^{3}8$	0.04011	0.03442	0.04077	0.01325
$^{5}9$	0.04518	0.03813	0.04449	0.01577
³ 9	0.04905	0.03928	0.04957	0.01409
$^{5}10$	0.04632	0.04027	0.04595	0.01587
$^{3}10$	0.05020	0.04177	0.05008	0.01373

Table S7: T_1 diagnostic obtained from different local coupled-cluster calculations.

It is important to notice also that the T_1 diagnostic (Table S7) obtained from DLPNO-CCSD(T) calculations is very small (around 0.015) and does not suggest any multireference character. On the contrary, in the case of LUCCSD(T0) the T_1 diagnostic is between 0.035 and 0.060 and it is above the recently proposed threshold of 0.03 for this scheme.⁴⁶ Therefore, one should be very cautious using T_1 diagnostic from local coupled-cluster calculations as an only diagnostic for the multireference character of the system.

We have employed Gaussian process regression (GPR), a less "parametric" tool to test how suitable is our linear fit. The statistical analyses were done with the scikit-learn library. We used the radial basis function (RBF) kernel. The parameters were optimized by maximizing the log marginal likelihood. We used a noise up to 0.3 kcal/mol since smaller noise leads to unrealistic regressions. The results can be found in the Table S3. We found that indeed the relation between CASPT2/CC and DLPNO-CCSD(T)/LUCCSD(T)-*hotspot* can be well-described with a linear regression. Between CASPT2/CC and LUCCSD(T), the linear correlation is much less pronounced.

Figure S3: Gaussian process regression compared to linear regression for different methods.

Table S8: DLPNO-CCSD(T) and corrected DLPNO-CCSD(T) results of reaction mechanism of C-H activation by small non-heme iron complex compared to UCCSD(T) results. All values in kcal/mol

	UCCSD(T)	DLPNO-CCSD(T)	corrected $DLPNO-CCSD(T)$
$^{3}\mathrm{SR}$	0.0	0.0	0.0
$^{5}\mathrm{SR}$	0.6	-6.8	2.4
$^{3}\mathrm{RC}$	-5.0	-4.9	-4.9
${}^{5}\mathrm{RC}$	-2.9	-9.8	-1.0
$^{3}\mathrm{TS}$	24.6	27.0	27.0
$^{5}\mathrm{TS}$	14.3	7.3	18.4
^{3}IM	13.6	14.1	14.1
5 IM	2.5	0.4	10.6
$^{3}\mathrm{SP}$	20.6	20.7	20.7
$^{5}\mathrm{SP}$	9.3	-4.2	7.7

References

- Feldt, M.; Phung, Q. M.; Pierloot, K.; Mata, R. A.; Harvey, J. N. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. J. Chem. Theory Comput. 2019, 15, 922–937.
- (2) Radoń, M. Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Calculations. J. Chem. Theory Comput. 2014, 10, 2306–2321.
- (3) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chem. Sci.* **2016**, *7*, 5032–5051.
- (4) Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* 1986, *33*, 8822–8824.
- (5) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Physical review letters* **1996**, 77, 3865.
- (6) Swart, M. A new family of hybrid density functionals. Chem. Phys. Lett. 2013, 580, 166–171.
- (7) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* **2003**, *91*, 146401.
- (8) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
- (9) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (10) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 1988, *37*, 785–789.

- (11) Handy, N. C.; Cohen, A. J. Left-right correlation energy. Mol. Phys. 2001, 99, 403–412.
- (12) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- (13) Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137.
- (14) Swart, M.; Ehlers, A. W.; Lammertsma, K. Performance of the OPBE exchangecorrelation functional. *Mol. Phys.* 2004, 102, 2467–2474.
- (15) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.
- (16) Weigend, F.; Hser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. *Chem. Phys. Lett.* **1998**, *294*, 143 – 152.
- (17) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- (18) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
- (19) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
- (20) Pierloot, K.; Phung, Q. M.; Domingo Toro, A. Spin State Energetics in First-Row

Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory. J. Chem. Theory Comput. **2017**, 13, 537–553.

- (21) Phung, Q. M.; Feldt, M.; Harvey, J. N.; Pierloot, K. Toward Highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach. J. Chem. Theory Comput. 2018, 14, 2446–2455.
- (22) Schütz, M. Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). J. Chem. Phys. 2000, 113, 9986–10001.
- (23) Schütz, M.; Werner, H.-J. Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD). J. Chem. Phys. 2001, 114, 661–681.
- (24) Werner, H.-J.; Schütz, M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J. Chem. Phys. 2011, 135, 144116.
- (25) Liu, Y. Linear Scaling High-spin Open-shell Local Correlation Methods. Ph.D. thesis, Institut f
 ür Theoretische Chemie der Universit
 ät Stuttgart, 2011.
- (26) Hansen, A.; Liakos, D. G.; Neese, F. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals. J. Chem. Phys. 2011, 135, 214102.
- (27) Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 034106.
- (28) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101.
- (29) Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 2017, 146, 164105.

- (30) Saitow, M.; Neese, F. Accurate spin-densities based on the domain-based local pairnatural orbital coupled-cluster theory. J. Chem. Phys. 2018, 149, 034104.
- (31) Balabanov, N. B.; Peterson, K. A. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J. Chem. Phys. 2005, 123, 064107.
- (32) Balabanov, N. B.; Peterson, K. A. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods. J. Chem. Phys. 2006, 125, 074110.
- (33) Dunning, J. T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.
- (34) Weigend, F. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. *Phys. Chem. Chem. Phys.* 2002, 4, 4285–4291.
- (35) Weigend, F. Hartree-Fock exchange fitting basis sets for H to Rn. J. Comput. Chem.
 2008, 29, 167–175.
- (36) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175–3183.
- (37) Bross, D. H.; Hill, J. G.; Werner, H.-J.; Peterson, K. A. Explicitly correlated composite thermochemistry of transition metal species. J. Chem. Phys. 2013, 139, 094302.
- (38) Izsák, R.; Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135, 144105.
- (39) Izsák, R.; Neese, F.; Klopper, W. Robust fitting techniques in the chain of spheres approximation to the Fock exchange: The role of the complementary space. J. Chem. Phys. 2013, 139, 094111.

- (40) Stoychev, G. L.; Auer, A. A.; Neese, F. Automatic Generation of Auxiliary Basis Sets.
 J. Chem. Theory Comput. 2017, 13, 554–562.
- (41) Aquilante, F. et al. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. Chem. 2016, 37, 506– 541.
- (42) Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1327.
- (43) Werner, H.-J. et al. MOLPRO, version 2019.1, a package of ab initio programs. 2019; see www.molpro.net.
- (44) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. *Chem. Phys. Lett.* 1989, 162, 165–169.
- (45) Frisch, M. J. et al. Gaussian16 Revision A.03. 2016; Gaussian Inc. Wallingford CT.
- (46) Feldt, M.; Mata, R. A. Hybrid Local Molecular Orbital: Molecular Orbital Calculations for Open Shell Systems. J. Chem. Theory Comput. 2018, 14, 5192–5202.

Cartesian Coordinates of the Molecules Studied in This Work

 $^{3}\mathrm{1}$ optimized with BP86-D3BJ/def2-TZVP

58			
FE	-0.065670	-0.293302	0.000000
Ν	-1.455982	-0.324948	-1.575622
Ν	1.401864	-0.378285	-1.550228
Ν	1.401864	-0.378285	1.550228
Ν	-1.455982	-0.324948	1.575622
С	-0.726046	-1.102871	-2.628394
С	0.646125	-0.524795	-2.845974
С	2.220282	-1.617910	-1.305535
С	3.009792	-1.625381	0.000000
С	2.220282	-1.617910	1.305535
С	0.646125	-0.524795	2.845974
С	-0.726046	-1.102871	2.628394
С	-2.705806	-1.088972	1.260252
С	-3.426689	-0.646048	0.000000
С	-2.705806	-1.088972	-1.260252
С	-1.840852	1.011576	-2.101614
С	2.321479	0.775136	-1.750070
С	2.321479	0.775136	1.750070
С	-1.840852	1.011576	2.101614
Ο	-0.183587	-1.929501	0.000000
Η	-2.495533	0.888619	-2.977251
Η	-2.380035	1.573108	-1.333121
Η	-0.957037	1.581634	-2.397315
Н	2.961861	0.582573	-2.624257

Η	1.743268	1.684727	-1.931506
Η	2.966288	0.927474	-0.885015
Н	-2.495533	0.888619	2.977251
Η	-0.957037	1.581634	2.397315
Η	-2.380035	1.573108	1.333121
Η	2.961861	0.582573	2.624257
Η	2.966288	0.927474	0.885015
Η	1.743268	1.684727	1.931506
Η	-2.418070	-2.142222	1.157228
Η	-3.369517	-1.003225	2.135725
Η	-4.410476	-1.137308	0.000000
Η	-3.646532	0.431467	0.000000
Η	-3.369517	-1.003225	-2.135725
Η	-2.418070	-2.142222	-1.157228
Η	-1.300186	-1.087770	-3.568517
Η	-0.666462	-2.138039	-2.276198
Η	1.223229	-1.154183	-3.539837
Η	0.578180	0.468977	-3.304572
Η	1.531939	-2.469541	-1.336445
Η	2.927861	-1.711741	-2.145990
Η	3.586771	-2.562528	0.000000
Η	3.774767	-0.835505	0.000000
Η	2.927861	-1.711741	2.145990
Η	1.531939	-2.469541	1.336445
Η	1.223229	-1.154183	3.539837
Η	0.578180	0.468977	3.304572
Η	-1.300186	-1.087770	3.568517

Η	-0.666462	-2.138039	2.276198
Ν	0.040934	1.734807	0.000000
С	0.106436	2.893488	0.000000
С	0.185180	4.335456	0.000000
Н	-0.310840	4.739875	0.894392
Н	-0.310840	4.739875	-0.894392
Η	1.237057	4.655963	0.000000

 51 optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	-0.101122	-0.278426	0.000000
Ν	-1.497736	-0.313896	-1.682244
Ν	1.449021	-0.384783	-1.620089
Ν	1.449021	-0.384783	1.620089
Ν	-1.497736	-0.313896	1.682244
С	-0.728534	-1.128012	-2.670439
С	0.667649	-0.570432	-2.888720
С	2.257716	-1.614207	-1.317436
С	3.035758	-1.586344	0.000000
С	2.257716	-1.614207	1.317436
С	0.667649	-0.570432	2.888720
С	-0.728534	-1.128012	2.670439
С	-2.738333	-1.055713	1.286743
С	-3.402572	-0.569225	0.000000
С	-2.738333	-1.055713	-1.286743
С	-1.867055	1.001103	-2.256460

С	2.350461	0.775461	-1.822146
\mathbf{C}	2.350461	0.775461	1.822146
\mathbf{C}	-1.867055	1.001103	2.256460
Ο	-0.215649	-1.911678	0.000000
Η	-2.493996	0.859104	-3.150718
Η	-2.430474	1.584494	-1.521287
Η	-0.972722	1.564663	-2.538313
Η	3.028870	0.586326	-2.669292
Η	1.759041	1.670280	-2.039251
Η	2.957075	0.960243	-0.933663
Η	-2.493996	0.859104	3.150718
Η	-0.972722	1.564663	2.538313
Η	-2.430474	1.584494	1.521287
Η	3.028870	0.586326	2.669292
Η	2.957075	0.960243	0.933663
Η	1.759041	1.670280	2.039251
Η	-2.460488	-2.110703	1.173290
Η	-3.449186	-0.985165	2.127096
Η	-4.423862	-0.977326	0.000000
Η	-3.538818	0.522722	0.000000
Η	-3.449186	-0.985165	-2.127096
Η	-2.460488	-2.110703	-1.173290
Η	-1.262497	-1.150109	-3.634653
Η	-0.683978	-2.150888	-2.281191
Η	1.221795	-1.235531	-3.569614
Η	0.610095	0.406029	-3.384549
Н	1.567677	-2.466135	-1.326955

Η	2.977208	-1.747697	-2.143458
Η	3.646538	-2.502119	0.000000
Η	3.773565	-0.771314	0.000000
Η	2.977208	-1.747697	2.143458
Η	1.567677	-2.466135	1.326955
Η	1.221795	-1.235531	3.569614
Η	0.610095	0.406029	3.384549
Η	-1.262497	-1.150109	3.634653
Η	-0.683978	-2.150888	2.281191
Ν	-0.000487	1.734562	0.000000
\mathbf{C}	0.063940	2.892498	0.000000
\mathbf{C}	0.144331	4.333214	0.000000
Η	-0.351089	4.737170	0.894934
Η	-0.351089	4.737170	-0.894934
Η	1.197343	4.650233	0.000000

$^{3}2$ optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	0.956643	-0.114309	0.049166
Ν	0.686440	-1.435119	-1.570120
Ν	1.542283	1.317495	-1.372298
Ν	1.019108	1.238186	1.677509
Ν	0.782719	-1.626846	1.498536
С	0.999076	-0.622776	-2.793815
С	2.017422	0.447915	-2.496634
С	2.729541	2.090070	-0.880674

С	2.544229	2.830499	0.435424
\mathbf{C}	2.337291	1.944079	1.660541
\mathbf{C}	0.893611	0.391365	2.909788
\mathbf{C}	1.441682	-0.992196	2.684469
\mathbf{C}	1.612398	-2.824782	1.142748
\mathbf{C}	1.351515	-3.457899	-0.216114
\mathbf{C}	1.651179	-2.568420	-1.420063
\mathbf{C}	-0.673872	-2.011601	-1.776326
\mathbf{C}	0.507268	2.257856	-1.872422
\mathbf{C}	-0.062562	2.258296	1.764885
\mathbf{C}	-0.597820	-2.039757	1.850106
Ο	2.570503	-0.435528	0.149760
Η	-1.367680	-1.229574	-2.085585
Η	-1.051130	-2.467626	-0.862227
Η	-0.613899	-2.782866	-2.561176
Η	0.958271	2.939243	-2.610591
Η	-0.316580	1.714264	-2.341517
Η	0.093535	2.847392	-1.051619
Η	-1.213202	-1.166704	2.076102
Η	-1.061503	-2.561604	1.010380
Η	-0.571649	-2.716032	2.718758
Η	-0.102419	2.877185	0.869682
Η	0.125561	2.900872	2.639766
Η	-1.029810	1.768703	1.868800
Η	1.461021	-3.576830	1.935942
Η	2.656356	-2.494726	1.177909
Н	0.341094	-3.883129	-0.280346

Η	2.028975	-4.322398	-0.282578
Η	2.659995	-2.148189	-1.338612
Η	1.590647	-3.174131	-2.339824
Η	1.356821	-1.284653	-3.598583
Η	0.056882	-0.175930	-3.131105
Η	2.968686	0.004078	-2.183051
Η	2.199166	1.063638	-3.392623
Η	3.002466	2.807804	-1.671878
Η	3.546821	1.369379	-0.770118
Η	1.760158	3.596586	0.361854
Η	3.475131	3.391748	0.606266
Η	2.389967	2.566311	2.570047
Η	3.124429	1.182421	1.709033
Η	1.409227	0.879474	3.751677
Η	-0.171240	0.346045	3.165935
Η	2.515112	-0.952096	2.472250
Η	1.285632	-1.618352	3.578060
Ο	-1.022999	0.202896	0.025146
\mathbf{C}	-3.597237	-0.110873	0.211142
F	-3.507246	-0.000304	1.556595
F	-3.487316	-1.419213	-0.112764
F	-4.784537	0.341428	-0.190596
\mathbf{S}	-2.229003	0.884381	-0.599637
0	-2.337227	0.621406	-2.028930
0	-2.412783	2.246011	-0.138492

 52 optimized with BP86-D3BJ/def2-TZVP

FE	0.928703	-0.101041	0.061989
Ν	0.695877	-1.623512	-1.548602
Ν	1.558446	1.250455	-1.522706
Ν	0.954874	1.426976	1.692680
Ν	0.779750	-1.549694	1.689159
С	1.074043	-0.863490	-2.778458
С	2.069021	0.260464	-2.520935
С	2.706087	2.067000	-1.012220
С	2.437522	2.897027	0.243189
С	2.260814	2.137562	1.563880
С	0.879991	0.615879	2.943939
С	1.435774	-0.791079	2.795836
\mathbf{C}	1.626108	-2.744907	1.377579
\mathbf{C}	1.347261	-3.467670	0.060297
\mathbf{C}	1.667658	-2.709649	-1.233070
С	-0.647139	-2.219304	-1.761827
С	0.536517	2.130642	-2.134599
С	-0.149635	2.414810	1.729927
С	-0.595524	-1.947407	2.056642
0	2.543628	-0.390043	0.210605
Н	-1.337204	-1.457871	-2.129132
Н	-1.047380	-2.617467	-0.827251
Н	-0.574905	-3.040291	-2.495252
Н	1.001795	2.752853	-2.916349
Η	-0.267869	1.537465	-2.577603

Η	0.090570	2.782009	-1.377433
Η	-1.210890	-1.063654	2.242959
Η	-1.056943	-2.500895	1.234274
Η	-0.578250	-2.585238	2.955432
Η	-0.205638	2.979305	0.798349
Η	0.005240	3.113817	2.569122
Η	-1.103152	1.899231	1.854046
Η	1.512032	-3.459903	2.211587
Η	2.664943	-2.395591	1.372690
Η	0.326363	-3.872102	0.033986
Η	1.999091	-4.354126	0.069584
Η	2.668438	-2.266205	-1.167318
Η	1.658801	-3.425129	-2.075371
Η	1.494251	-1.551756	-3.531513
Η	0.145926	-0.454600	-3.194877
Η	3.010029	-0.139065	-2.128017
Η	2.284801	0.773922	-3.473296
Η	3.019302	2.741110	-1.828047
Η	3.527138	1.370225	-0.811748
Η	1.610449	3.601575	0.082250
Η	3.326013	3.533278	0.373653
Η	2.338841	2.856219	2.399621
Η	3.059797	1.394402	1.673210
Η	1.414317	1.131354	3.759630
Η	-0.176614	0.572419	3.234361
Η	2.506749	-0.756868	2.569422
Н	1.303308	-1.333182	3.747662

0	-1.021082	0.158473	0.008919
С	-3.592041	-0.062776	0.182489
F	-3.507633	0.170526	1.511240
F	-3.507617	-1.394931	-0.021710
F	-4.764009	0.380545	-0.270668
\mathbf{S}	-2.195606	0.821630	-0.705767
Ο	-2.283718	0.428052	-2.103657
0	-2.334985	2.224854	-0.375151

33 optimized with BP86-D3BJ/def2-TZVP

FE	-0.016424	0.007887	0.000000
Ν	-1.361876	0.366601	1.576369
Ν	1.445109	-0.232267	1.534704
Ν	1.445109	-0.232267	-1.534704
Ν	-1.361876	0.366601	-1.576369
\mathbf{C}	-0.462256	0.940069	2.622352
\mathbf{C}	0.729166	0.042846	2.824795
\mathbf{C}	2.498721	0.807672	1.308606
\mathbf{C}	3.275426	0.667469	0.000000
\mathbf{C}	2.498721	0.807672	-1.308606
С	0.729166	0.042846	-2.824795
\mathbf{C}	-0.462256	0.940069	-2.622352
\mathbf{C}	-2.386647	1.405921	-1.261502
\mathbf{C}	-3.191618	1.140758	0.000000
С	-2.386647	1.405921	1.261502

С	-2.052894	-0.837162	2.104658
\mathbf{C}	2.082370	-1.564646	1.707547
\mathbf{C}	2.082370	-1.564646	-1.707547
\mathbf{C}	-2.052894	-0.837162	-2.104658
Ο	0.239570	1.660861	0.000000
Η	-2.621908	-0.566714	3.008303
Η	-2.745800	-1.235139	1.358822
Η	-1.333309	-1.620920	2.347912
Η	2.645846	-1.577576	2.653740
Η	1.308076	-2.336462	1.711605
Η	2.776292	-1.778069	0.895640
Η	-2.621908	-0.566714	-3.008303
Η	-1.333309	-1.620920	-2.347912
Η	-2.745800	-1.235139	-1.358822
Η	2.645846	-1.577576	-2.653740
Η	2.776292	-1.778069	-0.895640
Η	1.308076	-2.336462	-1.711605
Η	-1.849706	2.355449	-1.148461
Η	-3.054585	1.488778	-2.135513
Η	-4.040134	1.840569	0.000000
Η	-3.642306	0.138018	0.000000
Η	-3.054585	1.488778	2.135513
Η	-1.849706	2.355449	1.148461
Η	-1.016405	1.058686	3.568831
Η	-0.151055	1.927745	2.266894
Η	1.430027	0.487282	3.549404
Н	0.414893	-0.923552	3.236055

Η	1.997646	1.781314	1.338923
Н	3.212963	0.747023	2.148903
Н	4.020336	1.478373	0.000000
Н	3.870921	-0.255687	0.000000
Н	3.212963	0.747023	-2.148903
Η	1.997646	1.781314	-1.338923
Η	1.430027	0.487282	-3.549404
Η	0.414893	-0.923552	-3.236055
Η	-1.016405	1.058686	-3.568831
Н	-0.151055	1.927745	-2.266894
Ν	-0.285005	-1.925712	0.000000
Ν	-1.195649	-2.718257	0.000000
Ν	-2.044452	-3.508038	0.000000

53 optimized with BP86-D3BJ/def2-TZVP

FE	-0.060541	-0.014579	0.000000
Ν	-1.405815	0.360817	1.689043
Ν	1.497237	-0.237413	1.604721
Ν	1.497237	-0.237413	-1.604721
Ν	-1.405815	0.360817	-1.689043
С	-0.455898	0.966741	2.662650
С	0.764962	0.085631	2.867930
С	2.537264	0.795152	1.319030
С	3.297267	0.619506	0.000000
С	2.537264	0.795152	-1.319030

С	0.764962	0.085631	-2.867930
\mathbf{C}	-0.455898	0.966741	-2.662650
\mathbf{C}	-2.427398	1.372503	-1.287832
\mathbf{C}	-3.185340	1.044325	0.000000
\mathbf{C}	-2.427398	1.372503	1.287832
\mathbf{C}	-2.075333	-0.820925	2.275532
\mathbf{C}	2.111646	-1.572059	1.783608
\mathbf{C}	2.111646	-1.572059	-1.783608
\mathbf{C}	-2.075333	-0.820925	-2.275532
Ο	0.197558	1.636074	0.000000
Η	-2.601445	-0.534928	3.201488
Η	-2.805240	-1.231779	1.571550
Η	-1.346799	-1.604378	2.499804
Н	2.728967	-1.588362	2.697294
Н	1.322769	-2.327831	1.848290
Η	2.748795	-1.822977	0.934267
Η	-2.601445	-0.534928	-3.201488
Н	-1.346799	-1.604378	-2.499804
Η	-2.805240	-1.231779	-1.571550
Η	2.728967	-1.588362	-2.697294
Η	2.748795	-1.822977	-0.934267
Η	1.322769	-2.327831	-1.848290
Η	-1.900748	2.326078	-1.160065
Η	-3.138929	1.485481	-2.124197
Η	-4.094865	1.662140	0.000000
Н	-3.547832	0.005165	0.000000
Н	-3.138929	1.485481	2.124197

Η	-1.900748	2.326078	1.160065
Н	-0.958058	1.118324	3.634117
Н	-0.164341	1.943497	2.262803
Н	1.451155	0.573150	3.580566
Η	0.465272	-0.867146	3.321153
Η	2.031777	1.768065	1.322971
Η	3.270789	0.779436	2.146649
Η	4.074935	1.399230	0.000000
Η	3.857449	-0.325664	0.000000
Η	3.270789	0.779436	-2.146649
Η	2.031777	1.768065	-1.322971
Η	1.451155	0.573150	-3.580566
Η	0.465272	-0.867146	-3.321153
Η	-0.958058	1.118324	-3.634117
Η	-0.164341	1.943497	-2.262803
Ν	-0.331484	-1.931108	0.000000
Ν	-1.304525	-2.650630	0.000000
Ν	-2.203882	-3.378607	0.000000

$^{3}4$ optimized with BP86-D3BJ/def2-TZVP

FE	-0.098510	-0.816688	0.000000
Ν	1.341529	-0.759045	-1.342966
Ν	-1.438582	-0.378827	-1.367326
Ν	1.341529	-0.759045	1.342966
Ν	-1.438582	-0.378827	1.367326

Ν	0.219950	1.236859	0.000000
Ο	-0.346937	-2.442170	0.000000
\mathbf{C}	-3.315330	-0.882086	-2.756084
\mathbf{C}	-2.334244	-1.264437	-1.848676
\mathbf{C}	-1.480167	0.916368	-1.764736
\mathbf{C}	-2.450294	1.361232	-2.657793
\mathbf{C}	-3.380193	0.451375	-3.162670
\mathbf{C}	-2.334244	-1.264437	1.848676
\mathbf{C}	-1.480167	0.916368	1.764736
\mathbf{C}	-2.450294	1.361232	2.657793
\mathbf{C}	-3.380193	0.451375	3.162670
\mathbf{C}	-3.315330	-0.882086	2.756084
\mathbf{C}	1.590071	-1.654116	-2.313511
С	2.642832	-1.464182	-3.207237
С	3.439674	-0.324521	-3.091852
С	3.174905	0.600002	-2.074459
С	2.117346	0.346903	-1.211964
С	3.174905	0.600002	2.074459
\mathbf{C}	3.439674	-0.324521	3.091852
\mathbf{C}	2.642832	-1.464182	3.207237
\mathbf{C}	1.590071	-1.654116	2.313511
С	2.117346	0.346903	1.211964
С	-0.376789	1.803786	1.243966
С	-0.376789	1.803786	-1.243966
\mathbf{C}	1.728306	1.173885	0.000000
Η	-4.019539	-1.624282	-3.128731
Н	-2.232170	-2.284630	-1.480646

Η	-2.471322	2.408733	-2.958271
Η	-4.146175	0.781053	-3.864197
Н	-2.232170	-2.284630	1.480646
Η	-2.471322	2.408733	2.958271
Η	-4.146175	0.781053	3.864197
Н	-4.019539	-1.624282	3.128731
Η	0.937207	-2.525395	-2.341935
Η	2.830651	-2.208406	-3.979629
Η	4.263601	-0.154474	-3.784460
Η	3.780489	1.497932	-1.955723
Н	3.780489	1.497932	1.955723
Η	4.263601	-0.154474	3.784460
Η	2.830651	-2.208406	3.979629
Н	0.937207	-2.525395	2.341935
Н	0.410858	1.872279	2.009060
Н	-0.738297	2.826683	1.070160
Η	0.410858	1.872279	-2.009060
Η	-0.738297	2.826683	-1.070160
Η	2.205068	2.164221	0.000000

 54 optimized with BP86-D3BJ/def2-TZVP

FE	-0.234423	-0.969774	0.000000
Ν	1.368908	-0.971129	-1.405082
Ν	-1.564569	-0.298800	-1.452059
Ν	1.368908	-0.971129	1.405082

Ν	-1.564569	-0.298800	1.452059
Ν	0.307998	1.062800	0.000000
Ο	-0.659173	-2.546737	0.000000
\mathbf{C}	-3.563293	-0.456282	-2.750696
\mathbf{C}	-2.590785	-1.025101	-1.936005
\mathbf{C}	-1.460658	1.017174	-1.749426
\mathbf{C}	-2.410567	1.652527	-2.543686
С	-3.474685	0.904144	-3.052996
\mathbf{C}	-2.590785	-1.025101	1.936005
\mathbf{C}	-1.460658	1.017174	1.749426
С	-2.410567	1.652527	2.543686
\mathbf{C}	-3.474685	0.904144	3.052996
С	-3.563293	-0.456282	2.750696
\mathbf{C}	1.617718	-1.848702	-2.389693
\mathbf{C}	2.711113	-1.688915	-3.241084
\mathbf{C}	3.552847	-0.590738	-3.060972
\mathbf{C}	3.288897	0.319603	-2.029911
\mathbf{C}	2.184756	0.091947	-1.218697
\mathbf{C}	3.288897	0.319603	2.029911
С	3.552847	-0.590738	3.060972
С	2.711113	-1.688915	3.241084
С	1.617718	-1.848702	2.389693
С	2.184756	0.091947	1.218697
С	-0.220285	1.708870	1.242636
С	-0.220285	1.708870	-1.242636
С	1.810914	0.919748	0.000000
Н	-4.377560	-1.070028	-3.132958

Η	-2.606762	-2.075635	-1.645034
Η	-2.317191	2.715156	-2.767814
Η	-4.228437	1.381207	-3.679371
Η	-2.606762	-2.075635	1.645034
Η	-2.317191	2.715156	2.767814
Η	-4.228437	1.381207	3.679371
Η	-4.377560	-1.070028	3.132958
Η	0.926110	-2.686670	-2.475959
Η	2.894991	-2.418129	-4.028658
Η	4.411605	-0.440923	-3.715202
Η	3.931144	1.184279	-1.864780
Η	3.931144	1.184279	1.864780
Η	4.411605	-0.440923	3.715202
Η	2.894991	-2.418129	4.028658
Η	0.926110	-2.686670	2.475959
Η	0.556134	1.637202	2.019124
Η	-0.402587	2.779107	1.071843
Η	0.556134	1.637202	-2.019124
Η	-0.402587	2.779107	-1.071843
Η	2.320995	1.893635	0.000000

$^35_{\rm ax}$ optimized with BP86-D3BJ/def2-TZVP

С	-3.879369	1.538382	0.096381
С	-4.600537	0.397335	-0.257037
\mathbf{C}	-3.907928	-0.740947	-0.673350

\mathbf{C}	-2.518514	-0.708022	-0.724428
Ν	-1.823545	0.401780	-0.358954
С	-2.490710	1.504238	0.032820
С	-1.668527	-1.829705	-1.242085
Ν	-0.336526	-1.773354	-0.565126
С	-0.406867	-2.346769	0.830856
С	-0.551944	-1.256084	1.879215
Ν	0.384198	-0.136296	1.579394
С	0.046874	1.031611	2.431663
FE	0.140521	0.163126	-0.545699
С	0.746574	-2.417577	-1.375442
С	2.090647	-1.952383	-0.841845
Ν	2.096006	-0.451510	-0.631857
С	2.852952	0.199859	-1.736972
С	2.702150	-0.084465	0.682494
С	1.812123	-0.543262	1.822061
Ο	0.041176	0.233903	-2.194448
Η	-1.886694	2.371993	0.287634
Η	-4.381525	2.450253	0.415704
Η	-5.689425	0.393584	-0.213195
Η	-4.439874	-1.646200	-0.965116
Η	-2.139460	-2.813726	-1.104483
Η	-1.496487	-1.670263	-2.316610
Η	0.663439	-3.514699	-1.338660
Η	0.605759	-2.085529	-2.410196
Η	-1.245544	-3.052752	0.895457
Η	0.505626	-2.928456	0.998115

Η	2.330362	-2.438636	0.111193
Η	2.889539	-2.228407	-1.542419
Η	-1.567719	-0.845089	1.883126
Η	-0.361758	-1.671123	2.883121
Η	1.855533	-1.632712	1.938082
Η	2.167841	-0.120349	2.771426
Η	2.811978	1.007077	0.688333
Η	3.709978	-0.520618	0.776961
Η	3.895775	-0.149439	-1.726722
Η	2.378331	-0.047362	-2.691144
Η	2.830863	1.285097	-1.604174
Η	0.102053	0.757990	3.496353
Η	0.751903	1.845344	2.236068
Η	-0.969290	1.372366	2.207950
Η	0.604025	4.952588	-1.613466
Η	0.704819	5.149738	0.163607
Η	2.172419	4.745990	-0.777431
Ν	0.576103	2.044131	-0.422106
С	0.804651	3.175775	-0.537785
С	1.088026	4.583576	-0.697262

$^55_{\rm ax}$ optimized with BP86-D3BJ/def2-TZVP

С	-4.004053	1.463990	0.094412
С	-4.682683	0.303090	-0.280944
\mathbf{C}	-3.949733	-0.811551	-0.690069

С	-2.559270	-0.739703	-0.717087
Ν	-1.913417	0.384112	-0.332717
С	-2.614477	1.466827	0.055172
С	-1.688135	-1.856478	-1.234025
Ν	-0.372496	-1.846587	-0.560306
С	-0.430396	-2.382866	0.830796
С	-0.545990	-1.274354	1.872945
Ν	0.409264	-0.157896	1.598558
С	0.088269	0.986990	2.490529
FE	0.169407	0.324418	-0.516613
С	0.714990	-2.432284	-1.382273
С	2.075896	-2.004925	-0.841692
Ν	2.159545	-0.520897	-0.630872
С	2.925444	0.118992	-1.731339
С	2.741425	-0.158742	0.693761
С	1.832074	-0.601287	1.825752
Ο	0.072948	0.457559	-2.150441
Η	-2.036371	2.348376	0.331862
Η	-4.538992	2.356787	0.414369
Η	-5.771693	0.266341	-0.256936
Η	-4.449948	-1.730718	-0.995034
Η	-2.189057	-2.830996	-1.122873
Η	-1.516608	-1.685044	-2.307626
Η	0.655384	-3.532660	-1.407967
Η	0.580225	-2.056434	-2.404031
Η	-1.283438	-3.069229	0.937384
Η	0.468720	-2.984714	1.003969

Η	2.295451	-2.507651	0.107676
Н	2.859360	-2.317226	-1.545412
Н	-1.553760	-0.844870	1.875001
Н	-0.365026	-1.688012	2.879103
Н	1.845368	-1.692146	1.932027
Н	2.199718	-0.195037	2.777802
Н	2.864959	0.932798	0.700678
Н	3.744230	-0.603069	0.811543
Н	3.964868	-0.242730	-1.725812
Н	2.449714	-0.118566	-2.688025
Η	2.918957	1.205898	-1.598649
Η	0.129995	0.674494	3.545095
Η	0.807567	1.794973	2.325232
Η	-0.920652	1.353391	2.270782
Η	0.640806	5.140372	-1.751609
Η	0.795783	5.526399	-0.005924
Н	2.236116	5.031806	-0.946489
Ν	0.688268	2.379970	-0.238186
С	0.896226	3.493244	-0.495416
С	1.155217	4.875843	-0.816079

$^{3}5_{\mathrm{eq}}$ optimized with BP86-D3BJ/def2-TZVP

С	3.892755	-0.661178	-1.360054
С	4.434741	-0.720455	-0.075330
С	3.606903	-0.481498	1.024113

\mathbf{C}	2.261572	-0.199404	0.812337
Ν	1.739682	-0.183119	-0.442216
С	2.537029	-0.389490	-1.510163
С	1.298318	0.178901	1.908440
Ν	-0.082744	-0.203785	1.507990
С	-0.329306	-1.665910	1.745527
С	-0.084604	-2.463626	0.475587
Ν	-0.713200	-1.768147	-0.688302
С	-0.240821	-2.395260	-1.954532
FE	-0.189782	0.209680	-0.541194
С	-1.152001	0.653491	2.096249
С	-2.433919	0.473810	1.290717
Ν	-2.171565	0.565563	-0.196757
С	-2.642404	1.876526	-0.724504
С	-2.854478	-0.529498	-0.954986
С	-2.221587	-1.860496	-0.616334
Ο	-0.298114	0.404962	-2.175182
Η	2.052574	-0.317908	-2.483447
Η	4.507621	-0.825102	-2.243778
Η	5.491295	-0.944340	0.071020
Η	4.001849	-0.507251	2.039738
Η	1.580778	-0.272551	2.871162
Η	1.321185	1.270708	2.039388
Η	-1.329625	0.414039	3.157093
Η	-0.804194	1.691784	2.039963
Η	0.315697	-2.032768	2.556244
Η	-1.361406	-1.787849	2.092079

Η	-2.894408	-0.497677	1.503008
Η	-3.169805	1.235399	1.580761
Η	0.986491	-2.555106	0.263374
Η	-0.489944	-3.483277	0.571823
Η	-2.501880	-2.188126	0.390902
Η	-2.572869	-2.636410	-1.309157
Η	-2.727341	-0.295475	-2.018586
Η	-3.932470	-0.540351	-0.727286
Η	-3.740340	1.921469	-0.673174
Η	-2.223984	2.687355	-0.121444
Η	-2.312177	1.981060	-1.762836
Η	-0.536500	-3.454298	-1.969917
Η	-0.679479	-1.865945	-2.805678
Η	0.849329	-2.326975	-2.013831
Η	0.917520	4.911538	-1.493420
Η	0.590546	5.177496	0.245934
Η	2.202561	4.605978	-0.286315
Ν	0.305509	2.077238	-0.290485
С	0.675104	3.173524	-0.367180
\mathbf{C}	1.121890	4.542754	-0.477360

 $^55_{\rm eq}$ optimized with BP86-D3BJ/def2-TZVP

С	4.003829	-0.637247	-1.270910
С	4.491774	-0.759062	0.032315
С	3.630790	-0.547255	1.113587

\mathbf{C}	2.302480	-0.222326	0.864632
Ν	1.836640	-0.125489	-0.409368
С	2.663944	-0.318959	-1.457879
С	1.300052	0.118614	1.936749
Ν	-0.071657	-0.261616	1.490413
С	-0.325419	-1.734037	1.690433
С	-0.118255	-2.542681	0.416098
Ν	-0.795367	-1.898703	-0.736372
С	-0.350729	-2.487487	-2.020725
FE	-0.152085	0.247324	-0.558380
С	-1.143618	0.578010	2.112798
С	-2.444208	0.412245	1.334778
Ν	-2.218952	0.541356	-0.151807
С	-2.694079	1.862330	-0.647484
С	-2.887795	-0.549278	-0.927328
С	-2.284298	-1.913661	-0.619764
Ο	-0.233554	0.517906	-2.173895
Η	2.214093	-0.203533	-2.444137
Η	4.649542	-0.788460	-2.134651
Η	5.536260	-1.016954	0.208287
Η	3.989491	-0.631055	2.139284
Η	1.554004	-0.355074	2.896373
Η	1.311407	1.208052	2.089502
Η	-1.291937	0.314282	3.172286
Η	-0.802015	1.618835	2.065367
Η	0.329735	-2.117694	2.484865
Η	-1.351701	-1.849499	2.055970

Η	-2.900908	-0.563587	1.534976
Η	-3.170846	1.167174	1.664448
Η	0.948058	-2.614977	0.167971
Η	-0.485543	-3.572175	0.568628
Η	-2.559248	-2.246580	0.388418
Η	-2.704927	-2.655797	-1.313161
Η	-2.755341	-0.300299	-1.987824
Η	-3.968108	-0.557727	-0.709659
Η	-3.788399	1.925526	-0.550535
Η	-2.232098	2.659159	-0.057126
Η	-2.407017	1.975477	-1.698270
Η	-0.635456	-3.549958	-2.076181
Η	-0.806438	-1.936465	-2.849747
Η	0.738631	-2.405277	-2.103843
Η	0.916755	5.015486	-1.762171
Η	0.673185	5.567494	-0.075768
Η	2.254194	4.896164	-0.577939
Ν	0.350419	2.429054	-0.056081
С	0.718763	3.491655	-0.347350
С	1.165950	4.816771	-0.709824

$^36_{\rm ax}$ optimized with BP86-D3BJ/def2-TZVP

С	-0.947039	4.471563	-0.262279
С	-1.869161	3.505389	-0.671675
С	-1.471153	2.175032	-0.723130

Ν	-0.216283	1.799842	-0.363380
С	0.677743	2.725882	0.025313
С	0.343273	4.076012	0.085288
С	-2.331285	1.055098	-1.238726
Ν	-1.932930	-0.214100	-0.562354
С	-2.232073	-1.435186	-1.372483
С	-1.404153	-2.594964	-0.833732
Ν	0.032797	-2.183988	-0.625862
С	0.567316	-2.639391	0.688277
С	-0.143147	-1.928828	1.826402
Ν	-0.171573	-0.447860	1.592212
FE	0.066682	-0.142947	-0.547114
0	1.973105	-0.117547	-0.174376
С	-2.507934	-0.308619	0.823879
С	-1.505916	0.130882	1.882020
С	0.858896	0.211605	2.429592
Ο	0.112997	-0.037925	-2.192114
С	0.879093	-2.726081	-1.724643
Η	1.675198	2.364535	0.259148
Η	1.096382	4.799198	0.393250
Η	-1.234903	5.521807	-0.221882
Η	-2.883341	3.780939	-0.959115
Η	-3.404741	1.258563	-1.108271
Η	-2.119505	0.926854	-2.310313
Η	-3.307529	-1.674275	-1.348005
Η	-1.936803	-1.204818	-2.402076
Η	-3.421500	0.298140	0.887505

Η	-2.809415	-1.349092	0.989604
Η	-1.809738	-2.957171	0.118746
Η	-1.447923	-3.440130	-1.533840
Η	-1.395204	1.221557	1.883223
Η	-1.864052	-0.165029	2.882897
Η	-1.173771	-2.290920	1.934134
Η	0.362078	-2.149425	2.777802
Η	1.635288	-2.389407	0.685563
Η	0.466936	-3.732974	0.790012
Η	0.847989	-3.826435	-1.700046
Η	0.497462	-2.353696	-2.680151
Η	1.906766	-2.369875	-1.608477
Η	0.638089	0.055742	3.497878
Η	1.841705	-0.199674	2.185491
Η	0.871387	1.285703	2.219196
\mathbf{S}	3.071796	0.290712	-1.181347
Ο	2.852672	1.609537	-1.741556
\mathbf{C}	4.451057	0.489778	0.080722
F	5.578132	0.839513	-0.542738
F	4.122175	1.455090	0.975162
F	4.650100	-0.660335	0.755096
0	3.463962	-0.808278	-2.038731

 $^56_{\rm ax}$ optimized with BP86-D3BJ/def2-TZVP

52

 $C \quad -1.208067 \quad 4.561032 \quad -0.363184$

С	-2.083460	3.525453	-0.695996
С	-1.605726	2.218148	-0.711948
Ν	-0.328352	1.940351	-0.381310
С	0.529777	2.931549	-0.081748
С	0.120794	4.261944	-0.062876
С	-2.425870	1.043291	-1.190121
Ν	-1.999745	-0.207208	-0.532916
С	-2.246991	-1.419446	-1.349404
С	-1.414452	-2.591667	-0.830115
Ν	0.021391	-2.221044	-0.660673
С	0.588139	-2.649828	0.645104
С	-0.079073	-1.914476	1.795634
Ν	-0.111468	-0.428660	1.564991
FE	0.215281	-0.073379	-0.563365
Ο	2.102143	-0.007470	-0.127728
С	-2.498664	-0.317525	0.863388
С	-1.452955	0.135303	1.877275
С	0.904752	0.236831	2.419743
Ο	0.251077	0.062474	-2.198454
С	0.844848	-2.741598	-1.781545
Η	1.562156	2.638251	0.108997
Η	0.839749	5.043078	0.178535
Η	-1.559324	5.592644	-0.350483
Η	-3.122433	3.728616	-0.955637
Η	-3.502966	1.229420	-1.048012
Η	-2.236977	0.929415	-2.268571
Η	-3.315185	-1.695598	-1.356829

Η	-1.942047	-1.175090	-2.374465
Η	-3.414931	0.279099	0.992234
Η	-2.783422	-1.360601	1.046550
Η	-1.807277	-2.949696	0.129631
Η	-1.499502	-3.433065	-1.532409
Η	-1.352971	1.226598	1.866101
Н	-1.766358	-0.155509	2.894402
Η	-1.107949	-2.268598	1.938015
Η	0.454661	-2.132476	2.731611
Н	1.659894	-2.416474	0.612355
Н	0.482103	-3.740354	0.781171
Η	0.849577	-3.843282	-1.763274
Η	0.427191	-2.381379	-2.726928
Н	1.867588	-2.358168	-1.699834
Н	0.654138	0.097414	3.483592
Н	1.891144	-0.183972	2.210228
Н	0.929515	1.307982	2.192351
\mathbf{S}	3.292742	0.333461	-1.060141
Ο	3.279560	1.736659	-1.417577
С	4.656084	0.115955	0.215681
F	5.846574	0.302807	-0.356198
F	4.494469	1.007182	1.216281
F	4.600530	-1.128471	0.738478
0	3.500289	-0.689924	-2.060614

 $^{3}6_{\mathrm{eq}}$ optimized with BP86-D3BJ/def2-TZVP

С	-0.788752	2.378079	-1.525792
С	-1.335636	3.647169	-1.386638
С	-1.659288	4.109595	-0.111338
С	-1.439450	3.279629	0.988438
С	-0.897886	2.014904	0.786124
Ν	-0.555546	1.593234	-0.456371
С	-0.747733	0.990680	1.880690
Ν	0.303897	0.005054	1.517241
С	0.055101	-1.363990	2.049703
С	0.877202	-2.371416	1.251801
Ν	0.737771	-2.149682	-0.233505
С	2.054601	-2.183636	-0.931649
С	2.889987	-0.984633	-0.524108
Ν	2.078008	0.284549	-0.598560
FE	0.095674	-0.243914	-0.559603
FE O	0.095674 -1.711446	-0.243914 -0.829393	-0.559603 -0.136025
FE O S	0.095674 -1.711446 -2.905958	-0.243914 -0.829393 -0.730679	-0.559603 -0.136025 -1.113341
FE O S O	0.095674 -1.711446 -2.905958 -2.991562	-0.243914 -0.829393 -0.730679 -1.886641	-0.559603 -0.136025 -1.113341 -1.977018
FE O S O C	0.095674 -1.711446 -2.905958 -2.991562 1.675115	-0.243914 -0.829393 -0.730679 -1.886641 0.505859	-0.559603 -0.136025 -1.113341 -1.977018 1.828051
FE O S O C C	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739
FE O S O C C C	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786 2.433600	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439 1.036430	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739 -1.829349
FE O S O C C C O	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786 2.433600 0.042277	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439 1.036430 -0.405435	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739 -1.829349 -2.196239
FE O S O C C C O C	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786 2.433600 0.042277 -0.169542	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439 1.036430 -0.405435 -3.168786	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739 -1.829349 -2.196239 -0.830529
FE O S O C C C O C C	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786 2.433600 0.042277 -0.169542 -4.240583	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439 1.036430 -0.405435 -3.168786 -0.933157	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739 -1.829349 -2.196239 -0.830529 0.195507
FE O S O C C C O C C F	0.095674 -1.711446 -2.905958 -2.991562 1.675115 2.307786 2.433600 0.042277 -0.169542 -4.240583 -4.112630	-0.243914 -0.829393 -0.730679 -1.886641 0.505859 1.143439 1.036430 -0.405435 -3.168786 -0.933157 0.035497	-0.559603 -0.136025 -1.113341 -1.977018 1.828051 0.598739 -1.829349 -2.196239 -0.830529 0.195507 1.138343

F	-4.126406	-2.129692	0.805405
Η	-0.551771	1.935895	-2.491823
Η	-1.518484	4.251055	-2.273541
Η	-2.091615	5.100283	0.026182
Η	-1.701108	3.599672	1.996604
Η	-0.538170	1.463321	2.852963
Η	-1.699393	0.447881	1.960688
Η	0.299874	-1.434699	3.122482
Η	-1.013329	-1.564521	1.919293
Η	1.642371	1.231573	2.653854
Η	2.278664	-0.338845	2.180277
Η	1.939601	-2.305780	1.516084
Η	0.554963	-3.391638	1.499727
Η	1.852731	2.118470	0.387972
Η	3.386890	1.304988	0.756028
Η	3.263850	-1.097176	0.500858
Η	3.771209	-0.896495	-1.173120
Η	1.832171	-2.153648	-2.004918
Η	2.591080	-3.121780	-0.710965
Η	0.303668	-4.160876	-0.768385
Η	-1.119250	-3.169065	-0.290957
Η	-0.368642	-2.900099	-1.872503
Η	3.500180	1.307571	-1.806462
Η	2.211793	0.414912	-2.702102
Η	1.829233	1.946820	-1.884674
Ο	-3.078881	0.601786	-1.657055

 $^56_{\rm eq}$ optimized with BP86-D3BJ/def2-TZVP

С	-0.835470	2.550031	-1.490461
С	-1.410943	3.799967	-1.294538
С	-1.726034	4.196716	0.005329
С	-1.476906	3.327102	1.068946
С	-0.911960	2.084285	0.801921
Ν	-0.576635	1.727714	-0.458754
С	-0.752174	1.007866	1.845818
Ν	0.294631	0.028225	1.445767
С	0.052939	-1.332421	2.014753
С	0.903624	-2.367788	1.281471
Ν	0.793734	-2.217266	-0.205142
С	2.109895	-2.239982	-0.890074
С	2.958327	-1.032838	-0.503696
Ν	2.201889	0.245608	-0.642470
FE	0.031251	-0.246091	-0.638878
Ο	-1.805908	-0.820994	-0.172346
\mathbf{S}	-3.016942	-0.773161	-1.132920
Ο	-3.072451	-1.944660	-1.976570
С	1.672714	0.531487	1.755838
С	2.358544	1.131337	0.534408
С	2.575142	0.948770	-1.888611
Ο	-0.006137	-0.380005	-2.270364
С	-0.111883	-3.241154	-0.787802
С	-4.353322	-0.974516	0.172783

F	-4.227728	0.000098	1.108752
\mathbf{F}	-5.560344	-0.884340	-0.388350
\mathbf{F}	-4.229300	-2.166869	0.787459
Η	-0.590424	2.160395	-2.477945
Η	-1.617234	4.441458	-2.149408
Η	-2.176510	5.171645	0.190952
Η	-1.735688	3.601770	2.091225
Η	-0.539649	1.432552	2.839392
Η	-1.707040	0.465961	1.902434
Η	0.267740	-1.355513	3.096156
Η	-1.010464	-1.549689	1.866006
Η	1.625919	1.280038	2.560150
Η	2.258121	-0.307745	2.148404
Η	1.958761	-2.281770	1.568499
Η	0.582633	-3.376057	1.579477
Η	1.906472	2.096478	0.274771
Η	3.424045	1.316566	0.758671
Η	3.311661	-1.124786	0.531312
Η	3.858037	-1.004871	-1.134614
Η	1.897119	-2.227040	-1.966628
Η	2.658323	-3.169866	-0.659990
Η	0.339108	-4.241803	-0.693001
Η	-1.073371	-3.213069	-0.267949
Η	-0.291705	-3.005135	-1.842021
Η	3.641304	1.228582	-1.873431
Η	2.367277	0.298555	-2.744303
Η	1.966748	1.853826	-1.991030

37 optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	-0.017436	0.296258	0.000000
Ο	-0.132769	1.956165	0.000000
С	1.460839	0.302805	-1.305480
С	-1.450172	0.155801	1.435096
С	-1.450172	0.155801	-1.435096
С	1.460839	0.302805	1.305480
Ν	0.026479	-1.762231	0.000000
Ν	-1.576606	0.656646	-2.698995
Ν	-2.669561	-0.417735	-1.202103
Ν	-2.669561	-0.417735	1.202103
Ν	-1.576606	0.656646	2.698995
Ν	1.597984	1.079071	2.406218
Ν	2.666647	-0.327019	1.185701
Ν	2.666647	-0.327019	-1.185701
Ν	1.597984	1.079071	-2.406218
С	-2.838816	0.395041	-3.226547
Н	-3.129875	0.722535	-4.217180
С	-3.532721	-0.283918	-2.281400
Η	-4.545888	-0.666941	-2.278332
С	-3.015418	-1.149400	0.000000
Η	-4.097088	-1.316873	0.000000
Η	-2.509607	-2.122651	0.000000

С	-3.532721	-0.283918	2.281400
Η	-4.545888	-0.666941	2.278332
\mathbf{C}	-2.838816	0.395041	3.226547
Η	-3.129875	0.722535	4.217180
\mathbf{C}	-0.586185	1.323765	3.564264
Η	-0.210032	0.582459	4.285545
Η	-1.139243	2.085218	4.129462
С	0.570160	2.011797	2.866770
Η	0.228061	2.593223	2.000226
Η	1.044795	2.691414	3.584412
С	2.859051	0.935187	2.977273
Η	3.160259	1.473770	3.867588
С	3.541226	0.050389	2.202411
Η	4.548498	-0.339100	2.285946
\mathbf{C}	3.028235	-1.091333	0.000000
Η	2.515021	-2.058005	0.000000
Η	4.109562	-1.257866	0.000000
\mathbf{C}	3.541226	0.050389	-2.202411
Η	4.548498	-0.339100	-2.285946
\mathbf{C}	2.859051	0.935187	-2.977273
Η	3.160259	1.473770	-3.867588
С	0.570160	2.011797	-2.866770
Η	1.044795	2.691414	-3.584412
Η	0.228061	2.593223	-2.000226
С	-0.586185	1.323765	-3.564264
Н	-1.139243	2.085218	-4.129462
Н	-0.210032	0.582459	-4.285545

С	0.020575	-2.922617	0.000000
С	0.020564	-4.370873	0.000000
Н	0.532918	-4.749085	-0.895810
Η	-1.010799	-4.751222	0.000000
Η	0.532918	-4.749085	0.895810

57 optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	-0.057235	0.961656	0.000000
0	-0.126200	2.691132	0.000000
С	1.377591	0.635695	-1.299454
С	-1.376001	0.529259	1.449525
С	-1.376001	0.529259	-1.449525
С	1.377591	0.635695	1.299454
Ν	0.084626	-3.096906	0.000000
Ν	-1.551251	0.956667	-2.730132
Ν	-2.459943	-0.263678	-1.206215
Ν	-2.459943	-0.263678	1.206215
Ν	-1.551251	0.956667	2.730132
Ν	1.533710	1.285522	2.477072
Ν	2.461608	-0.173815	1.188460
Ν	2.461608	-0.173815	-1.188460
Ν	1.533710	1.285522	-2.477072
С	-2.725798	0.439719	-3.267018
Н	-3.050129	0.668349	-4.275184
С	-3.303533	-0.327492	-2.304124

Η	-4.225522	-0.896309	-2.308009
\mathbf{C}	-2.593451	-1.067523	0.000000
Η	-3.581242	-1.538182	0.000000
Η	-1.805885	-1.837762	0.000000
\mathbf{C}	-3.303533	-0.327492	2.304124
Η	-4.225522	-0.896309	2.308009
\mathbf{C}	-2.725798	0.439719	3.267018
Η	-3.050129	0.668349	4.275184
\mathbf{C}	-0.660729	1.777931	3.576411
Η	-0.399506	1.164209	4.450964
Η	-1.245572	2.638109	3.931346
С	0.594463	2.323554	2.914822
Η	0.346451	2.924176	2.026508
Η	1.108367	2.960551	3.644545
\mathbf{C}	2.699111	0.877384	3.111855
Η	3.017408	1.278299	4.066771
\mathbf{C}	3.293152	-0.041993	2.294173
Η	4.219362	-0.592881	2.404445
\mathbf{C}	2.675630	-0.996113	0.000000
Η	1.951760	-1.825137	0.000000
Η	3.701145	-1.376731	0.000000
\mathbf{C}	3.293152	-0.041993	-2.294173
Η	4.219362	-0.592881	-2.404445
\mathbf{C}	2.699111	0.877384	-3.111855
Η	3.017408	1.278299	-4.066771
С	0.594463	2.323554	-2.914822
Η	1.108367	2.960551	-3.644545

Η	0.346451	2.924176	-2.026508
С	-0.660729	1.777931	-3.576411
Η	-1.245572	2.638109	-3.931346
Η	-0.399506	1.164209	-4.450964
\mathbf{C}	0.086543	-4.260521	0.000000
С	0.089759	-5.711648	0.000000
Η	0.604542	-6.088610	-0.894169
Η	-0.941013	-6.091560	0.000000
Η	0.604542	-6.088610	0.894169

$^{3}8$ optimized with BP86-D3BJ/def2-TZVP

FE	0.010878	-0.165700	0.000000
0	0.351006	-1.765834	0.000000
С	1.346836	0.387887	1.307511
С	-1.400635	-0.181825	-1.421589
С	-1.400635	-0.181825	1.421589
С	1.346836	0.387887	-1.307511
Ν	-1.434424	-0.623600	2.714111
Ν	-2.675926	0.265692	1.203487
Ν	-2.675926	0.265692	-1.203487
Ν	-1.434424	-0.623600	-2.714111
Ν	1.663206	-0.228737	-2.471249
Ν	2.260066	1.392409	-1.188221
Ν	2.260066	1.392409	1.188221
Ν	1.663206	-0.228737	2.471249

С	-2.696474	-0.454478	3.270728
Η	-2.928170	-0.761502	4.283841
\mathbf{C}	-3.481802	0.115159	2.320075
Η	-4.521652	0.418383	2.344911
С	-3.099082	0.961072	0.000000
Η	-4.192280	1.018285	0.000000
Η	-2.696840	1.984280	0.000000
\mathbf{C}	-3.481802	0.115159	-2.320075
Η	-4.521652	0.418383	-2.344911
\mathbf{C}	-2.696474	-0.454478	-3.270728
Η	-2.928170	-0.761502	-4.283841
\mathbf{C}	-0.364669	-1.179766	-3.569861
Η	-0.248239	-0.490460	-4.418879
Η	-0.733231	-2.136831	-3.964537
\mathbf{C}	0.979667	-1.444267	-2.920107
Η	0.882710	-2.109395	-2.052662
Η	1.617832	-1.931798	-3.666653
\mathbf{C}	2.754015	0.379322	-3.080258
Η	3.173746	0.028105	-4.015458
\mathbf{C}	3.131945	1.410446	-2.272072
Η	3.925021	2.140912	-2.378776
\mathbf{C}	2.332957	2.236028	0.000000
Η	1.509539	2.963620	0.000000
Η	3.284175	2.776939	0.000000
С	3.131945	1.410446	2.272072
Η	3.925021	2.140912	2.378776
С	2.754015	0.379322	3.080258

Η	3.173746	0.028105	4.015458
С	0.979667	-1.444267	2.920107
Н	1.617832	-1.931798	3.666653
Н	0.882710	-2.109395	2.052662
С	-0.364669	-1.179766	3.569861
Н	-0.733231	-2.136831	3.964537
Н	-0.248239	-0.490460	4.418879

 58 optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	0.017055	-0.245714	0.000000
0	0.354929	-1.940004	0.000000
\mathbf{C}	1.352049	0.382786	1.300799
\mathbf{C}	-1.376712	-0.166322	-1.449643
\mathbf{C}	-1.376712	-0.166322	1.449643
\mathbf{C}	1.352049	0.382786	-1.300799
Ν	-1.437310	-0.642802	2.723612
Ν	-2.637774	0.299817	1.205783
Ν	-2.637774	0.299817	-1.205783
Ν	-1.437310	-0.642802	-2.723612
Ν	1.660555	-0.232816	-2.466642
Ν	2.245133	1.401645	-1.188091
Ν	2.245133	1.401645	1.188091
Ν	1.660555	-0.232816	2.466642
С	-2.712187	-0.477089	3.254836
Н	-2.966834	-0.798183	4.258026

С	-3.473904	0.113530	2.296156
Η	-4.516901	0.406732	2.298009
\mathbf{C}	-2.996116	1.029236	0.000000
Η	-4.077198	1.198631	0.000000
Η	-2.480011	1.999967	0.000000
\mathbf{C}	-3.473904	0.113530	-2.296156
Η	-4.516901	0.406732	-2.298009
\mathbf{C}	-2.712187	-0.477089	-3.254836
Η	-2.966834	-0.798183	-4.258026
\mathbf{C}	-0.364113	-1.196321	-3.576429
Η	-0.245609	-0.509936	-4.427626
Η	-0.725891	-2.157046	-3.967873
\mathbf{C}	0.975344	-1.453063	-2.907931
Η	0.863752	-2.097186	-2.022299
Η	1.622042	-1.957134	-3.635702
\mathbf{C}	2.726769	0.400137	-3.091067
Η	3.134630	0.064260	-4.037208
\mathbf{C}	3.105242	1.431662	-2.279715
Η	3.897790	2.162797	-2.386739
\mathbf{C}	2.288905	2.247665	0.000000
Η	1.425832	2.928076	0.000000
Η	3.214459	2.831209	0.000000
\mathbf{C}	3.105242	1.431662	2.279715
Η	3.897790	2.162797	2.386739
С	2.726769	0.400137	3.091067
Η	3.134630	0.064260	4.037208
С	0.975344	-1.453063	2.907931

Η	1.622042	-1.957134	3.635702
Н	0.863752	-2.097186	2.022299
\mathbf{C}	-0.364113	-1.196321	3.576429
Η	-0.725891	-2.157046	3.967873
Н	-0.245609	-0.509936	4.427626

39 optimized with BP86-D3BJ/def2-TZVP

\mathbf{FE}	0.043713	0.043073	-0.008543
С	0.698248	0.160150	3.034949
Н	1.480852	0.046762	3.803062
Н	-0.170769	-0.435728	3.324570
Η	0.364716	1.198355	2.974441
Ν	1.145791	1.827546	-0.239104
Ν	1.218949	-0.297835	1.724962
С	0.416736	3.125362	-0.225233
Η	-0.336444	3.161574	-1.013832
Η	1.135767	3.947110	-0.372953
С	2.089853	1.860413	0.926659
Η	1.589419	2.408030	1.734552
Η	2.994318	2.429823	0.657663
С	1.918970	1.735010	-1.517749
Η	2.578305	2.619094	-1.569358
Η	2.535995	0.830515	-1.461375
С	1.050180	1.685891	-2.770618
Н	1.733272	1.767770	-3.629670

Η	0.401116	2.570044	-2.840928
\mathbf{C}	0.268439	0.395059	-2.967471
Н	-0.213273	0.400813	-3.960101
Н	0.965240	-0.448534	-2.918692
\mathbf{C}	-1.943952	1.026512	-2.178974
Η	-2.322035	0.888472	-3.205392
Η	-1.639311	2.067141	-2.047167
Η	-2.738404	0.831384	-1.456613
Ν	-1.219602	-1.562710	0.342791
Ν	-0.793525	0.121479	-1.948248
\mathbf{S}	-1.602572	1.292605	1.022781
\mathbf{C}	-2.195422	-1.334427	1.459244
Η	-1.643093	-1.388484	2.399880
Η	-2.928559	-2.162253	1.454444
\mathbf{C}	-2.861123	0.019355	1.358069
Η	-3.364806	0.251272	2.305970
Η	-3.638547	0.045409	0.578677
\mathbf{C}	-1.222323	-1.298720	-2.126476
\mathbf{C}	-2.005189	-1.759751	-0.922869
Η	-2.937051	-1.191875	-0.832426
Η	-2.280941	-2.821017	-1.023990
С	-0.423997	-2.797921	0.629837
Н	-1.135967	-3.634770	0.736404
Н	0.206043	-2.978392	-0.249165
С	0.450883	-2.727367	1.878251
С	1.607342	-1.740175	1.816114
Η	-0.092340	3.254761	0.734300

С	2.453357	0.469988	1.380990
Η	2.959178	-0.078800	0.579594
Η	3.125682	0.517941	2.254589
Η	2.205692	-1.953804	0.924644
Η	2.244271	-1.861132	2.709167
Η	0.901678	-3.724992	1.993214
Η	-0.151902	-2.587776	2.785994
Η	-0.309577	-1.893027	-2.239634
Η	-1.828962	-1.401753	-3.041768
Ο	1.215679	-0.917469	-0.757462

59 optimized with BP86-D3BJ/def2-TZVP

FE	0.035978	0.044093	-0.002463
С	0.805722	0.183163	3.107012
Н	1.583572	0.058114	3.880218
Η	-0.084925	-0.379740	3.402263
Η	0.507116	1.232765	3.039068
Ν	1.206963	1.907676	-0.216253
Ν	1.298914	-0.299614	1.803388
С	0.486738	3.201577	-0.149082
Η	-0.294441	3.249222	-0.912196
Η	1.192664	4.035436	-0.300229
С	2.180026	1.860937	0.918880
Η	1.736927	2.431362	1.744660
Н	3.110154	2.379890	0.631966

С	1.907940	1.793135	-1.532286
Η	2.574655	2.669073	-1.631781
Η	2.523234	0.885747	-1.497152
С	0.984864	1.737056	-2.754276
Η	1.633953	1.884190	-3.630825
Н	0.299452	2.596804	-2.769829
С	0.238550	0.426116	-3.003762
Η	-0.198368	0.446691	-4.018087
Н	0.954715	-0.401791	-2.952456
С	-2.019094	0.979966	-2.264142
Η	-2.398310	0.849048	-3.292455
Η	-1.740633	2.027195	-2.114441
Η	-2.812963	0.753709	-1.548004
Ν	-1.290717	-1.639473	0.344620
Ν	-0.851934	0.107281	-2.034807
\mathbf{S}	-1.603025	1.262892	1.034229
С	-2.286481	-1.370340	1.422637
Η	-1.760458	-1.422708	2.380350
Η	-3.054804	-2.166322	1.417838
С	-2.903700	0.005698	1.282362
Η	-3.458823	0.255938	2.196159
Η	-3.625934	0.055037	0.453402
С	-1.221806	-1.329356	-2.164447
С	-2.003708	-1.833886	-0.957396
Η	-2.964599	-1.311685	-0.890237
Η	-2.230538	-2.903625	-1.094998
\mathbf{C}	-0.454669	-2.831410	0.681113

Η	-1.131639	-3.695580	0.808641
Η	0.189395	-3.019711	-0.186594
\mathbf{C}	0.414643	-2.698082	1.937123
\mathbf{C}	1.617883	-1.756581	1.866595
Η	0.004739	3.306156	0.828139
\mathbf{C}	2.514004	0.450710	1.383659
Η	2.978617	-0.118717	0.571239
Η	3.232660	0.512784	2.220350
Η	2.195838	-1.989440	0.965739
Η	2.260627	-1.930512	2.748204
Η	0.829882	-3.701965	2.116171
Η	-0.197655	-2.492730	2.825902
Η	-0.286458	-1.890062	-2.266657
Н	-1.827226	-1.488198	-3.073951
Ο	1.202483	-0.917930	-0.753120

$^{3}10$ optimized with BP86-D3BJ/def2-TZVP

FE	0.673487	0.147916	0.145233
Ο	1.998386	0.792196	0.879804
Ν	-0.682539	0.865438	1.551035
С	-0.670931	-0.120660	2.695527
Η	-0.874907	0.406240	3.639266
Η	-1.493746	-0.828753	2.537627
С	0.645280	-0.853188	2.761695
Η	1.464652	-0.161690	2.983668

Η	0.614976	-1.623635	3.549545
Ν	0.942122	-1.480584	1.434501
\mathbf{C}	2.380317	-1.913431	1.450349
Η	2.468060	-2.750438	2.162236
Η	2.954294	-1.066329	1.842228
\mathbf{C}	2.950255	-2.323849	0.100667
Η	2.439750	-3.206191	-0.307948
Η	3.980044	-2.661657	0.291243
\mathbf{C}	3.047545	-1.208624	-0.932711
Η	3.584509	-0.349939	-0.512508
Η	3.605348	-1.576892	-1.809384
Ν	1.724247	-0.699962	-1.431491
С	1.957725	0.395811	-2.443134
Η	2.921302	0.235403	-2.948003
Η	1.178550	0.312347	-3.210287
\mathbf{C}	1.920336	1.750925	-1.786275
Η	2.752282	1.867554	-1.084037
Η	1.986489	2.550178	-2.542143
Ν	0.654386	1.896219	-0.994321
\mathbf{C}	0.814115	3.110562	-0.126324
Η	0.828008	3.993589	-0.786338
Η	1.796840	3.020840	0.348855
С	-0.244366	3.300518	0.951247
Η	-1.237111	3.484142	0.512886
Η	0.000127	4.244548	1.461580
С	-0.293543	2.230552	2.036512
Н	0.694783	2.120324	2.499604

Η	-1.011316	2.532482	2.817193
\mathbf{C}	-2.055076	0.885643	0.976019
Η	-2.252307	1.865814	0.524065
Η	-2.798731	0.747883	1.772910
\mathbf{C}	-2.145366	-0.167425	-0.108231
Ο	-1.047579	-0.581720	-0.603666
Ν	-3.319294	-0.614312	-0.538307
С	-4.614767	-0.114538	-0.060325
Η	-4.502618	0.801712	0.524156
Η	-5.114770	-0.881447	0.547258
Η	-5.246246	0.109550	-0.929692
\mathbf{C}	-3.390182	-1.641342	-1.586227
Η	-4.140076	-2.387422	-1.296002
Η	-2.415022	-2.119167	-1.701152
Η	-3.695823	-1.185161	-2.537982
\mathbf{C}	0.068646	-2.664631	1.233462
Η	0.231417	-3.387058	2.047426
Η	0.301369	-3.152461	0.284596
Η	-0.984454	-2.375622	1.213752
\mathbf{C}	1.013326	-1.796984	-2.146912
Η	1.639682	-2.151611	-2.979661
Η	0.063197	-1.424657	-2.535527
Η	0.812347	-2.634103	-1.478140
\mathbf{C}	-0.497066	2.071038	-1.915281
Η	-0.310922	2.917725	-2.592647
Η	-1.407259	2.283732	-1.347638
Η	-0.662181	1.164605	-2.503853

510 optimized with BP86-D3BJ/def2-TZVP

FE	0.697589	0.149572	0.160924
0	2.029749	0.785874	0.881281
Ν	-0.774255	0.901907	1.664748
С	-0.660110	-0.075868	2.798929
Η	-0.788087	0.450641	3.757357
Η	-1.495248	-0.782833	2.713906
С	0.662665	-0.837598	2.820193
Η	1.497636	-0.154575	3.009578
Η	0.633193	-1.580797	3.634740
Ν	0.937166	-1.516619	1.516493
С	2.373902	-1.951907	1.455753
Η	2.497512	-2.792989	2.158212
Η	2.972408	-1.110288	1.823533
С	2.881121	-2.374789	0.074688
Η	2.304197	-3.222183	-0.320560
Η	3.886754	-2.787745	0.246988
С	3.056213	-1.284230	-0.988248
Η	3.611541	-0.438074	-0.565041
Η	3.646470	-1.699040	-1.823758
Ν	1.781683	-0.737498	-1.559321
С	2.045111	0.413908	-2.484768
Η	3.035916	0.301656	-2.951900
Η	1.308614	0.358245	-3.295743
С	1.970749	1.773599	-1.797729

Η	2.783944	1.886722	-1.072802
Η	2.071870	2.567554	-2.556164
Ν	0.687879	1.953093	-1.044785
\mathbf{C}	0.805451	3.139279	-0.135313
Η	0.833305	4.045233	-0.764353
Η	1.773012	3.048922	0.371555
С	-0.301536	3.298908	0.910014
Η	-1.283664	3.419962	0.428174
Η	-0.120189	4.274728	1.386125
С	-0.363612	2.286122	2.058931
Η	0.627002	2.193263	2.522260
Η	-1.063466	2.657587	2.827461
С	-2.128342	0.853740	1.079251
Η	-2.383243	1.836680	0.659251
Η	-2.882276	0.636195	1.849201
С	-2.162590	-0.162985	-0.053728
Ο	-1.052382	-0.543438	-0.556783
Ν	-3.317571	-0.620416	-0.519938
С	-4.632197	-0.170012	-0.043496
Η	-4.556269	0.747949	0.543732
Η	-5.106480	-0.957092	0.559076
Η	-5.266968	0.033220	-0.915313
\mathbf{C}	-3.349676	-1.613470	-1.602234
Η	-4.089290	-2.383036	-1.349402
Η	-2.363253	-2.067315	-1.716387
Η	-3.648891	-1.131372	-2.543189
С	0.035855	-2.674312	1.320192

Η	0.221414	-3.431537	2.097956
Н	0.208675	-3.125661	0.339175
Н	-1.011122	-2.362780	1.367692
С	1.047038	-1.789818	-2.301080
Н	1.655072	-2.162223	-3.141486
Η	0.108523	-1.379088	-2.684784
Η	0.810321	-2.629422	-1.642472
С	-0.452859	2.103110	-1.974741
Η	-0.290779	2.964863	-2.640962
Η	-1.377403	2.269829	-1.413332
Н	-0.577793	1.198653	-2.577556