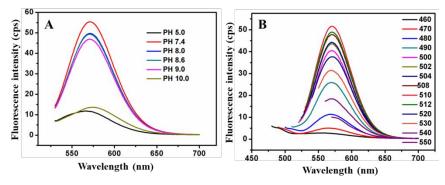
Supporting Information for


A Ratiometric Fluorescent DNA Radar Based on Contrary Response of DNA/Silver Nanoclusters and G-Quadruplex/Crystal Violet

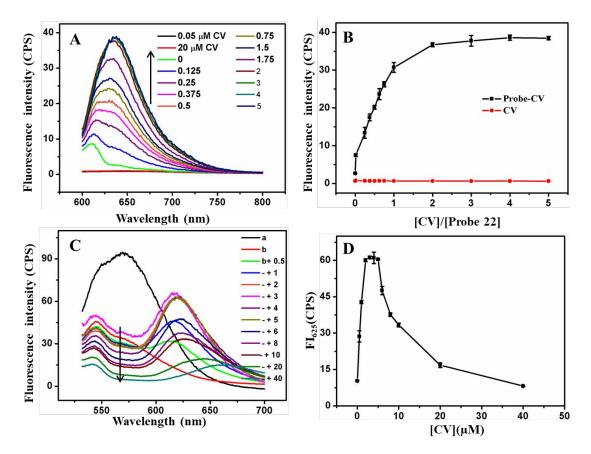
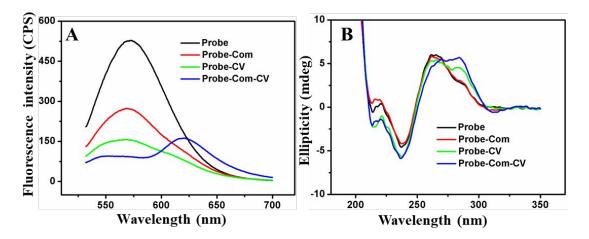
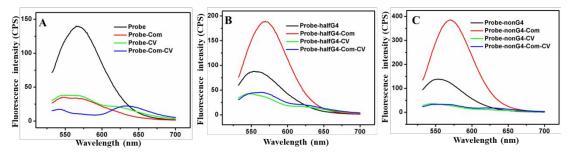
Shuang Wang,^{†,‡} Shasha Lu,^{†,‡} Jiahui Zhao,^{†,§}and Xiurong Yang^{*,†,‡,§}

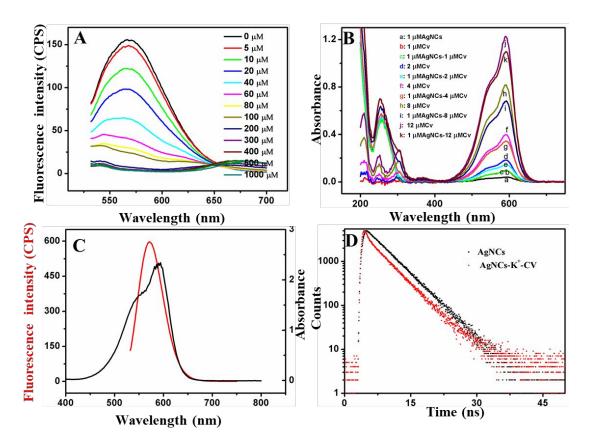
† State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
‡University of Science and Technology of China, Hefei, Anhui 230026, China
§ University of Chinese Academy of Sciences, Beijing 100039, China
E-mail: xryang@ciac.ac.cn

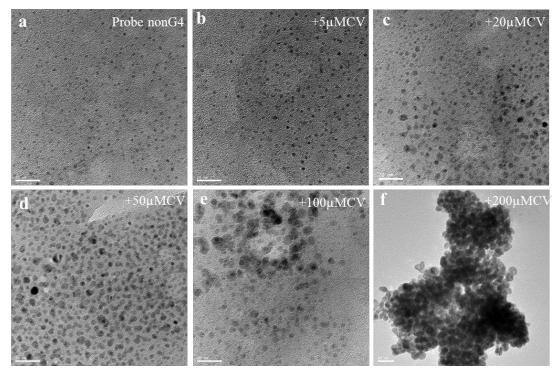
Table S1. All the	e sequences used in experiment.				
DNA sequences	5'-3'				
Probe-0bp	CCCCACCCCACCCCACCCATTGGGTTAGGGTTAGGGTTA				
	GGG				
Probe-8bp	CCCCACCCCACCCCATT <u>TCAACATC</u> GGGTTAGGGT				
	TAGGGTTAGGG				
Probe-15bp	CCCCACCCCACCCCACCCCA <u>TCAACATCAGTCTGA</u> GGGTT				
	AGGGTTAGGGTTAGGG				
Probe-22bp	CCCCACCCCACCCCATT <u>TCAACATCAGTCTGATAA</u>				
	<u>GCTA</u> GGGTTAGGGTTAGGGG				
Probe-29bp	CCCCACCCCACCCCATT <u>TTTTCAACATCAGTCTGA</u>				
	TAAGCTATTTTGGGTTAGGGTTAGGGTTAGGG				
Probe-36bp	CCCCACCCCACCCCACTT <u>TTTTTTTCAACATCAGTC</u>				
11000-3000	<u>TGATAAGCTATTTTTT</u> GGGTTAGGGTTAGGGTTAGGG				
C _{8bp}	GATGTTGA				
C _{15bp}	TCAGACTGATGTTGA				
C _{22bp}	TAGCTTATCAGACTGATGTTGA				
C _{29bp}	AAAATAGCTTATCAGACTGATGTTGAAAA				
C _{36bp}	AAAAAATAGCTTATCAGACTGATGTTGAAAAAAAA				
Probe halfG4	CCCCACCCCACCCCATCAACATCAGTCTGATAAGCTATGG				
	GTAGGG				
Probe nonG4	CCCCACCCCACCCCATCAACATCAGTCTGATAAGCTA				
Probe 368	CCCTTTAACCCC <u>TTCCCCTCTGGTCAACCAGTCACA</u> GGGT TAGGGTTAGGGTTAGGG				
Т	T GTG ACT GGT TGA CCA GAG GGG				
C1	TCAC AGT GAA CCG GTC TCT TTC				
C2	TCTCACACAGAAATCGCACCCGT				
C3	TAAGGTGCATCTAGTGCAGTTAG				
C4	TGTAAACATCCTTGACTGGAAG				

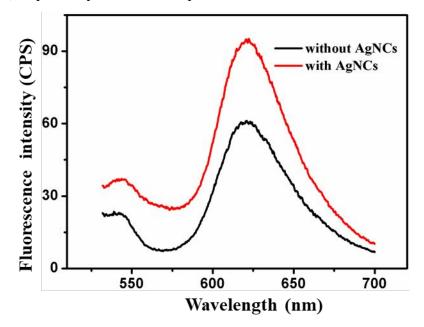
C5	TGAGATGAAGCACTGTAGCTC
C6	CAGCAGCAATTCATGTTTTGAA
С7	ATGCTTATCAGCTGATGTTGA

Figure S1. Fluorescence spectra of AgNCs under different pH values (A) and excitation wavelength (B).


Figure S2. The effect of stoichiometry of CV/Probe-22 bp on the fluorescence intensity and optimization of CV concentration in ratiometric sensing system. The concentration of probe, Com was $1.5 \,\mu$ M.


Figure S3. (A) Fluorescent and circular dichroism (B) spectra of probe, probe-Com, probe-CV, probe-Com-CV. The concentrations of probe, Com, CV were 5 μ M, 5 μ M and 50 μ M, respectively.


Figure S4. Fluorescence spectra of different control sequences (probe-22 bp (A), probe halfG4 (B), probe nonG4 (C)) in presence of complementary strand, CV, complementary strand and CV, respectively.

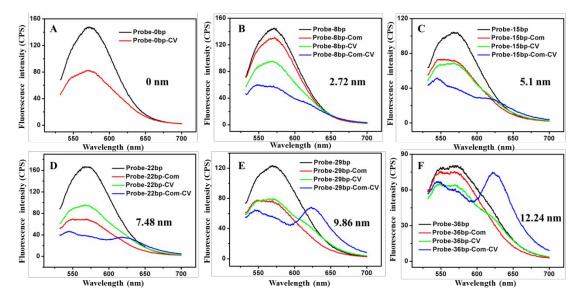

Figure S5. (A) Fluorescent spectra and (B) UV-vis absorption of AgNCs in different concentration of CV. (C) Spectral overlap between fluorescence emission (red line) of AgNCs (λ ex=512 nm) and absorbance spectra of CV (black line). (D) Fluorescent lifetime of AgNCs in absence and presence of CV.

Figure S6. HR-TEM of AgNCs templated with Probe nonG4 in different concentration of CV. The concentration of DNA and gradient CV were 1.5, 5, 20, 50, 100, 200 μ M, respectively. All the bar represent 20 nm.

Figure S7. Fluorescence spectra of $Probe_T$ before and after preparing AgNCs. The concentrations of DNA template, its complementary and CV were 5 μ M, 5 μ M, and 10 μ M, respectively.

Figure S8. The relationship of sequence length with the fluorescence quenching and the appearance of a new emission. The concentration of DNA, Com, and CV were 1.5, 4, and 3 μ M, respectively.

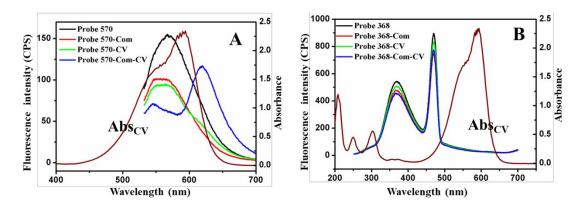


Figure S9. The effect of spectral overlap on the fluorescence quenching and the appearance of a new emission. The concentration of DNA, Com, and CV were 1.5, 4, and 3 μ M, respectively.

Samples	Spiked (µM)	Found (µM)	Recovery (%)	RSD (n=3.%)
1	0	-	-	-
2	0.5	0.569	113.8	0.29
3	0.75	0.798	1.064	5.22
4	1	0.950	95	4.61
5	1.25	1.240	99.2	1.41

 Table S2. Recovery Test Results of target DNA in 1% Human Serum Samples