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Synthesis of the pericosine A analogs 19 and 20 

 

To a round bottom flask with shikimic acid (50 mmol, 8.70 g) and camphorsulfonic acid (CSA) (10 mol 

%, 5 mmol, 1.16 g) was added methanol (100 mL). This solution was then refluxed overnight followed 

by concentration under reduced pressure. The residue was purified by recrystallization from ethyl 

acetate (125 mL) to yield (-)-methylshikimate (7.04 g, 75 % yield). To a solution of (-)-methylshikimate 

(37.4 mmol, 7.04 g) and cyclohexanone (1.5 equiv, 56.1 mmol, 5.8 mL) in THF (75 mL) was added 

CSA (10 mol %, 3.74 mmol, 868 mg). The reactant mixture was stirred overnight at room temperature. 

Upon completion, as judged by TLC, the reaction was then concentrated under reduced pressure and 

purified using a silica gel column, eluting with 5 % acetone/DCM to produce compound 13 (9.02 g, 90 

% yield). 

 (-)-methylshikimate: white solid; 1H NMR (500 MHz, D2O) δ 6.76 (dt, J = 3.8, 1.8 Hz, 1H), 4.39 (td, J 

= 4.0, 1.9 Hz, 1H), 3.97 (ddd, J = 8.1, 6.2, 5.1 Hz, 1H), 3.72 (d, J = 4.3 Hz, 1H), 3.70 (s, 3H), 2.69 (ddt, 

J = 18.2, 5.2, 1.7 Hz, 1H), 2.18 (ddt, J = 18.1, 6.3, 1.7 Hz, 1H). 

(3aS,4R,7aR)-methyl 4-hydroxy-3a,4,5,7a-tetrahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-

6-carboxylate (15)[3]: white solid; 1H NMR (300 MHz, CDCl3) δ 6.97 (ddd, J = 3.5, 2.2, 1.1 Hz, 1H), 

4.76 (t, J = 5.0 Hz, 1H), 4.10 (dd, J = 7.5, 6.2 Hz, 1H), 3.93 (td, J = 8.0, 4.6 Hz, 1H), 3.80 (s, 3H), 2.83 

(dd, J = 17.4, 4.7 Hz, 1H), 2.35 – 2.16 (m, 1H), 2.08 (s, 1H), 1.78 – 1.29 (m, 10H). 

 

To a three-neck round bottom flask equipped with an addition funnel was added 13 (15 mmol, 4.02 g), 

and DCM (150 m). Pyridine (1 equiv, 15 mmol, 1.21 mL) was added followed by DMAP (3 mol %, 

0.45 mmol, 55 mg). The solution was cooled down to 0°C. A solution of Tf2O (1.2 equiv, 18 mmol, 

3.04 m) in DCM (70 m) was then added dropwise over 15 min. The reactant mixture was stirred at 0°C 
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for 5 min. The ice bath was then removed and the mixture was warmed to room temperature. Upon 

completion as judged by TLC (5% acetone/DCM) the reaction was worked up by quenching with 

NaHCO3, and partitioning with 3x EtOAc, drying over sodium sulfate, and concentrating under reduced 

pressure. Purification was performed using a silica gel column, eluting with 100% DCM to yield 

compound 14 (4.12 g, 69 % yield, containing 4 wt% DCM).  

(3aR,4R,7aR)-methyl 4-(((trifluoromethyl)sulfonyl)oxy)-3a,4,5,7a-

tetrahydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-6-carboxylate (14)[4]: colorless oil; 1H NMR 

(300 MHz,CDCl3) δ 7.03 (ddd, J = 3.6, 2.2, 1.2 Hz, 1H), 5.04 (td, J = 8.0, 4.8 Hz, 1H), 4.89 – 4.79 (m, 

1H), 4.33 (dd, J = 7.5, 6.2 Hz, 1H), 3.82 (s, 3H), 3.06 (ddt, J = 17.5, 4.9, 1.1 Hz, 1H), 2.63 (ddt, J = 

17.5, 8.4, 1.8 Hz, 1H), 1.80 – 1.32 (m, 10H).  

 

To a solution of 14 (9.46 mmol, 3.79 g) in DMF (10 mL) was added CsOAc (1 equiv, 9.46 mmol, 1.81 

g) at 0°C. After complete addition, the ice/water bath was removed and the reaction was warmed to 

room temperature with stirring overnight. Upon completion as judged by TLC (100% DCM), the 

reaction was quenched with NH4Cl. The aqueous layer was partitioned 3x with MTBE. The organic 

extracts were combined and washed once with brine, dried over sodium sulfate, and concentrated under 

reduced pressure. Purification was performed using a silica gel column, eluting with 100% DCM to 

produce compound 15 (1.02 g, 43 % yield, containing 2.6 wt% DCM). The diene decomposes readily 

and therefore was used immediately in the next step.  

(3aR,7aS)-methyl 3a,7a-dihydrospiro[benzo[d][1,3]dioxole-2,1'-cyclohexane]-5-carboxylate (15)[4-

5]: colorless oil; 1H NMR (500 MHz, CDCl3) δ 6.90 (dt, J = 3.8, 1.2 Hz, 1H), 6.55 (dt, J = 10.0, 1.1 Hz, 

1H), 6.08 (dd, J = 10.0, 3.9 Hz, 1H), 4.83 (dd, J = 8.8, 3.6 Hz, 1H), 4.66 (dd, J = 8.8, 4.0 Hz, 1H), 3.82 

(s, 3H), 1.76 – 1.27 (m, 10H). 
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To a solution of 15 (3.86 mmol, 967 mg) and NaHCO3 (10 equiv, 38.6 mmol, 3.24 g) in H2O (16 mL) 

and 1,1,1-trifluoroacetone (16 mL), oxone was added in 4 portions every 15 min (2 equiv, 7.73 mmol, 

1.18 g x 4) at -15°C. After complete addition, the reactant mixture was a stirred at -15°C for 3 h and 

then warm naturally to 10°C. After stirring for an additional hour at 10°C, the reaction was completed 

as judged by TLC (1% acetone/DCM). The reactant mixture was diluted with MTBE and treated with 

NaHCO3. The aqueous layer was partitioned 3x with MTBE. The organic layers were combined and 

dried over sodium sulfate and concentrated under reduced pressure. Purification was performed using a 

silica gel column, eluting with 100% DCM to 2.5% acetone/ DCM to yield compound 16 (609 mg, 

60 % yield, containing 6.5 wt % DCM). 

(3a'R,5a'R,6a'R,6b'R)-methyl 3a',5a',6a',6b'-tetrahydrospiro[cyclohexane-1,2'-

oxireno[2',3':3,4]benzo[1,2-d][1,3]dioxole]-5'-carboxylate (16)[4]: colorless oil; 1H NMR (500 MHz, 

CDCl3) δ 6.85 (t, J = 2.0 Hz, 1H), 4.82 (dd, J = 6.8, 2.0 Hz, 1H), 4.60 (dd, J = 6.7, 2.2 Hz, 1H), 4.01 

(dd, J = 3.9, 1.8 Hz, 1H), 3.86 (s, 3H), 3.70 (br dd, J = 3.7, 1.7 Hz, 1H), 1.70 – 1.35 (m, 10H). 

 

To a nitrogen sparged flask was added a solution of 16 (2.0 mmol, 534 mg) in Et2O (9.5 mL) at 0°C 

followed by HCl (1M) in Et2O (1.5 equiv, 3.0 mmol, 3.0 mL). The reactant mixture was warmed to 

room temperature and stirred overnight. The reactant mixture was concentrated under reduced pressure. 

Purification was performed using a silica gel column, eluting with 2% MeOH/DCM to yield compounds 

17 (386.6 mg, 64 % yield, containing 2.6 wt% DCM and 3.3 wt% acetone) and 18 (148.4 mg, 25 % 

yield, contains 3.9 wt % DCM). 

(3aS,4S,5S,7aR)-methyl 5-chloro-4-hydroxy-3a,4,5,7a-tetrahydrospiro[benzo[d][1,3]dioxole-2,1'-

cyclohexane]-6-carboxylate (17)[4-5]: colorless oil; 1H NMR (500 MHz, CDCl3) δ 6.91 (d, J = 3.7 Hz, 

1H), 4.78 (m, J = 3.1 Hz, 1H), 4.77 – 4.74 (m, 1H), 4.44 (q, J = 4.5 Hz, 1H), 4.32 (t, J = 5.5 Hz, 1H), 

3.85 (s, 3H), 2.33 (d, J = 4.2 Hz, 1H), 1.77 – 1.32 (m, 10H). 

(3aS,4S,7R,7aS)-methyl 4-chloro-7-hydroxy-3a,4,7,7a-tetrahydrospiro[benzo[d][1,3]dioxole-2,1'-

cyclohexane]-5-carboxylate (18)[4-5]: colorless oil; 1H NMR (500 MHz, CDCl3) δ 7.36 (d, J = 6.2 Hz, 

1H), 5.10 (d, J = 1.7 Hz, 1H), 4.86 (dd, J = 6.6, 1.7 Hz, 1H), 4.67 (dt, J = 6.6, 1.4 Hz, 1H), 4.43 (ddd, J 

= 10.5, 6.3, 1.8 Hz, 1H), 3.88 (s, 3H), 2.22 (d, J = 4.2 Hz, 1H), 1.67 – 1.32 (m, 10H). 
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To a solution of 17 (1.16 mmol, 354.1 mg) in MeOH (15 mL), acetyl chloride (3 drops) was added. 

After completion of the reaction as judged by TLC, the solution was concentrated under reduced 

pressure. Purification was performed using reverse phase chromatography, eluting with 60% 

MeOH/H2O. This yielded an inseparable mixture of product and impurities. Therefore, impure product 

19 (166 mg) was placed in a round bottom flask with CSA (10 mol%, 0.074, 17 mg) and acetone (8 

mL). The reaction was stirred at room temperature overnight. Upon completion as determined by 1H 

NMR, the reactant mixture was concentrated under reduced pressure and purified using a silica gel 

column, eluting with 5% acetone/DCM, to yield the acetonide derivative 19 (52.3 mg, 27 % yield), 

which was used directly in the next step. To a solution of the acetonide (0.19 mmol, 52.3 mg) in MeOH 

(2.5 mL), 3 drops of acetyl chloride were added. The solution was stirred overnight at room temperature 

and concentrated under reduced pressure. The resultant mixture was placed in a freezer and 

recrystallized to yield pure compound 19 (42.8 mg, 17 % yield).  

(3R,4R,5S,6S)-methyl 6-chloro-3,4,5-trihydroxycyclohex-1-enecarboxylate (19)[5a]: white solid; 1H 

and 13C NMR data, see Table S3; HRESIMS m/z 223.0374, [M+H]+ (calcd for C8H12ClO5, 223.0368).  

 

To a solution of 18 (0.49 mmol, 148.9 mg) in MeOH (6.2 mL), 3 drops of acetyl chloride were added. 

After completion of the reaction as judged by TLC, the solution was concentrated under reduced 

pressure. Purification was performed using reverse phase chromatography, eluting with 60% 

MeOH/H2O, to produce compound 20 (87.6 mg, 80 % yield).  

Pericosine DO (20)[6]: white solid; 1H and 13C NMR data, see Table S3; HRESIMS m/z 223.0373, 

[M+H]+ (calcd for C8H12ClO5, 223.0368).  
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Table S1. Crystal data and structure refinement for compound 3 

Empirical formula C22 H24 N2 O4 S3 

Formula weight 476.61 

Crystal system monoclinic 

Space group P21/n 

Unit cell dimensions a = 12.2411(8) Å    α= 90° 
 

b = 8.5886(6) Å      β= 94.469(3)° 
 

c = 22.1443(15) Å  γ= 90° 

Volume 2321.0(3) Å3 

Z, Z' 4, 1 

Density (calculated) 1.364 Mg/m3 

Wavelength 0.71073 Å 

Temperature 100(2) K 

F(000) 1000 

Absorption coefficient 0.350 mm-1 

Absorption correction semi-empirical from equivalents 

Max. and min. transmission 0.7471 and 0.7049 

Theta range for data collection 2.545 to 36.349° 

Reflections collected 105369 

Independent reflections 11275 [R(int) = 0.0493] 

Data / restraints / parameters 11275 / 0 / 283 

wR(F2 all data) wR2 = 0.1063 

R(F obsd data) R1 = 0.0338 

Goodness-of-fit on F2 1.000 

Observed data [I > 2σ(I)] 9370 

Largest and mean shift / s.u. 0.003 and 0.000 

Largest diff. peak and hole 0.655 and -0.438 e/Å3 
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Table S2.  Calculated carbon chemical shifts of selected carbon atoms for the C-6 epimers of 7, 8, and 12. 

Carbon 7aa 7ba 8aa 8ba 12ab 12bb 

1 139.2 136.8 139.6 138.3 131.7 132.5 

2 143.2 148.3 144.6 148.7 132.5 131.5 

3 70.9 72.7 71.5 72.2 65.2 69.3 

4 70.1 77.1 71.6 76.4 66.6 68.6 

5 80.9 73.2 80.2 72.5 76.0 70.6 

6 52.7 53.1 49.3 52.5 48.9 48.7 

7 173.2 172.7 174.4 173.6 159.0 159.6 

8 53.7 53.6 53.8 53.6 51.3 51.2 
a Calculated using B3LYP/6-311+G(2d,p) in gas phase; b Calculated using B3LYP/6-31G(d,p) in gas phase.  
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Table S3.  The results of the AMES IITM assaya of 4.  

 

Compound 
Precipiate 

(µg/mL) 

TA98b TAMix
b 

-S9c +S9 -S9 +S9 

4 ≥1000 Negetived Negetive Negetive Negetive 
aFrom the service provider – BioReliance. The assay was performed following the standard protocol as described in Proc. Natl. Acad. Sci. 

USA, 1994, 91, 11606-11610. The purpose of this study is to evaluate the mutagenic potential of the test article by measuring its ability to 

induce reverse mutations at selected loci of the tester strains in the presense and absence of S9 activation. b Salmonella tester strains. The 

TA98 strain is used for the detection of frameshift mutations. TAMix is a mixture of six tester strains which are designed to revert by one 

specific base-pair substitution out of all possible changes. c Exogenous metabolic activation system containing majorly S9 liver 

homogenate (30%) and other reagents. d One or more test article concentrations had at least a two-fold increase in the number of positive 

wells. However, the average number of positive wells was within the historical vehicle control range and this increase was not dose 

dependent. Therefore the conclusion was negative. 
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Figure S1. Structures of compounds 1-36. 
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Figure S2. Comparison of the 1H (A) and 13C (B) NMR spectra of chloramine-T (blue) and Product A (red, 

residue after evaporation of solvent). All spectra were measured in methanol-d4. 

 

  

 

 

A 
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Figure S3. The fungal metabolite pericosine A (4) reacts with natural and synthetic nucleophiles to form 

pericosine-nucleophile adducts. All the pericosine-nucleophile conjugated products were generated by providing 

the nucleophilic compounds directly to the culture broth of Tolypocladium sp. MEA-2. 
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Figure S4. LCMS analysis for the reactions of pericosine A (4) with selected sulfur-containing compounds (1, 2, 

5, and 6). Compound 4 (1 equiv) was mixed with 1 [1 equiv, (A) and (B)], 2 [1 equiv, (C) and (D)], 5 [1 equiv, 

(E) and (F)], or 6 ([1 equiv, (G) and (H)], respectively, in 50% MeOH with [(A), (C), (E), and (G)] / without [(B), 

(D), (F), and (H)] the presence of Et
3
N (2 equiv). The reaction mixtures were kept static overnight at room 

temperature prior to LCMS analysis (210 nm UV traces were shown).  
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Figure S5. The absolute configurations of 7, 8, and 12. (A) Structures of 7a, 7b, 8a, 8b, 12a, and 12b. B3LYP/6-

311+G(2d,p) was used to calculate the specific rotation value and ECD spectrum of 7a and B3LYP/6-31+G(d,p) 

was used to calculate the specific rotation value of 12a. (B)–(D) Comparison of the experimental (7, 8, and 12) 

and calculated (7a, 7b, 8a, 8b, 12a, and 12b) differences of carbon chemical shifts between C
4
 and C

3
 and 

between C
5
 and C

3
. B3LYP/6-311+G(2d,p) was used to calculate the 

13

C chemical shifts of 7a, 7b, 8a, and 8b, 

and B3LYP/6-31+G(d,p) was used to calculate the 
13

C chemical shifts of 12a and 12b. (E) and (F) Chiral HPLC 

analysis of 7 [(E), solid line, 7 obtained from the reaction conditions: 4 : 1 : Et
3
N = 1 : 1.5 : 2; dashed line, 7 

obtained from the reaction conditions:  4 : 1 : Et
3
N = 1 : 1 : 0] and 8 [(F), obtained from the reaction conditions: 

4 : 2 : Et
3
N = 1 : 1.5 : 10]. HPLC conditions: (E) Lux cellulose-2 analytical column, 30% MeCN elution, 200 nm; 

(F) Lux cellulose-3 analytical column, 25% MeCN elution, 200 nm. (G) Comparison of the experimental and 

calculated ECD spectra of 7a, ent-7a, 8a, ent-8a, and 12. B3LYP/6-311+G(2d,p) was used to calculate the ECD 

spectra of 7a and ent-7a. 
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Figure S6. Investigating the mechanism of the formation of 7. 4 (1 equiv) was mixed with 1 [1 equiv for (A) and 

(B); 0.5 equiv for (C) and (D)] in 50% MeOH containing Et
3
N [2 equiv for (A) and (B); 10 equiv for (C) and 

(D)]. The reactant mixtures were analyzed by LCMS at different time points [(A) and (C) 1 min; (B) and (D) 120 

min]. (E) Chiral-HPLC analysis of 7 derived from different conditions. The reactants/reagents were incubated in 

50% MeOH overnight prior to HPLC analysis. The initial ratios of reactants/reagents were shown on the 

chromatograms. HPLC conditions: Lux cellulose-2 analytical column, 30% MeCN elution, 200 nm. 
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Figure S7. The mechanism of Et
3
N-catalyzed formation of 8 by the reaction between pericosine A (4) and 4-

bromo-alpha-toluene thioacetate (2). (A)-(C) 4 (1 equiv) was mixed with 2 (1 equiv) in 50% MeOH containing 

Et
3
N (2 equiv). The reactant mixtures were injected into LCMS at different time [(A) 1 min; (B) 30 min; (C) 

overnight] after the mixing. d) 4 (1 equiv) was mixed with 2 (1.5 equiv) in 50% MeOH containing Et3N (10 

equiv). The reactant mixtures were analyzed by LCMS after the overnight reaction. *Unidentified minor 

products. The structure of minor product 31 was identified in following experiments. (E) Chiral HPLC analysis of 

8 that was produced in 50% MeOH under different reaction conditions. The ratio of reactants/reagents in each 

reaction was shown on the chromatograms. HPLC conditions Lux cellulose-3 analytical column, 25% MeCN 

elution, 200 nm. (F) The proposed mechanism of the reaction between 4 and 2. 
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Figure S8. LCMS analysis of the pericosine analogs 4, 19 and 20 (A) and the reactions of 19 and 20 with sulfur-

containing compounds 1 and 2 in 50% MeOH with the presence of Et
3
N (B). The reaction mixtures were kept 

static overnight at room temperature prior to LCMS analysis (210 nm UV traces were shown). The ratio of 

reactants/reagents in each reaction was shown on the chromatograms. #The separation of the two peaks were 

resolved by HPLC using a longer C18 column (Gemini 5 μm C18, 110 Å, 250 × 4.6 mm). *Unidentified minor 

products. 
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Figure S9. Comparison (A) and principle components analysis (PCA) (B) of the 
3

J
H,H 

coupling constants of 19, 

20, 6-epi-19, 6-epi-20, and 22-28. The PCA was performed using the CAMO Unscrambler® X 10.3 software. 
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Figure S10. Comparison of the 13C NMR-derived chemical shifts () of 19, 20, 6-epi-19, 6-epi-20, and 22-28. 
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Figure S11. Comparing the 
3

J
H,H 

coupling constants of 21 with selected model compounds. 

  

Possible structures of 21 Possible structures of 29

√ √



S23 

 

 

Figure S12. Investigating the mechanism of Et
3
N-catalyzed formation of 23-25 from the reactions between 19 

and 1. 19 (1 equiv) was mixed with Et
3
N (2 equiv) in 50% MeOH and the reactant mixture was analyzed by 

LCMS at different times [(A) 1 min; (B) 15 min; (C) 60 min] after the mixing. (D) The overlaid LCMS 

chromatograms (UV 210 nm) showing comparative production of 23-25 in 50% MeOH under different reaction 

conditions. The ratio of reactants/reagents in each reaction is shown on the chromatograms. The LCMS runs were 

extended to 40 min to generate better separation of the target analytes. (E)  The proposed mechanisms of Et
3
N-

catalyzed Nu-substitution of 19 by MeOH and 1 in 50% MeOH.  
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Figure S13. Catalytic effects of selected basic compounds in the reactions between 4 and 2. 
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Figure S14. Spermine (29) catalyzed reactions of pericosine A (4). (A)-(D) Comparison of the catalytic abilities 

of Et
3
N [2 equiv, (A)] and 30 [2 equiv, (B)-(D)] for the reactions between 4 [1 equiv for (A)-(C) and 2 equiv for 

(D)] and 2 (1 equiv) in H
2
O [(A) and (B)] and 50% propylene glycol [PG, (C) and (D)]. All the reactant mixtures 

were kept static overnight prior to LCMS analysis. *The peak may be a racemic or a scalemic mixture of 30 and 

ent-30, which could not be resolved by chiral HPLC analysis using Lux cellulose-2 or cellulose-3 column. (E)-

(G) Time-dependent formation of 31 by the reaction between 4 and 29 in 50% PG. 4 (1 equiv) was mixed with 29 

(2 equiv) in 50% PG and the reactant mixture was analyzed by LCMS at different times [(E) 1 min; (F) 15 min; 

(G) 60 min] after mixing. The UV chromatograms (monitored at 210 nm) are displayed for (A)-(G). h) Synthesis 

of the addition product (30) of periecosine A and spermine. i) Synthesis of 8 and 31 via the reaction between 2 

and 4 catalyzed by 29.  
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Figure S15. Generating the TFA salt of 30 (TFA-30). The selected 
1

H NMR resonances, specific rotations, and 

ECD spectral data were compared between 30 and TFA-30.  
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Figure S16. Investigating the mechanism of spermine-catalyzed reaction between 4 and 2 in 50% PG. (A)-(D) 

LCMS analysis of the reactions between 30 and 2 and between 8 and 29. The ratio of reactants/reagents in each 

reaction are shown in the chromatograms. The reactant mixtures were kept static overnight at room temperature 

prior to LCMS analysis (210 nm UV traces were shown). *The peak may be a racemic or a scalemic mixture of 

30 and ent-30. #Unidentified minor products. (E)-(H) Chiral HPLC analysis of 8 that was produced in 50% PG 
[(E)-(G)] or 50% MeOH (H) under different conditions. The ratio of reactants/reagents in each reaction is shown 

on the chromatograms. HPLC conditions: Lux cellulose-3 analytical column, 25% MeCN elution, 200 nm. 
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Figure S17. LCMS analysis of the reactions between skunk anal gland secretion (SE) and thiol-reactive 

compounds (4, 19, 20, and chloramine-T). The purchased WCS™ skunk essence (SE, 100% pure) was diluted in 

CH
2
Cl

2 
as 1 : 100. All other reagents (4, 19, 20, chloramine-T, 29, and Et3N) were dissolved in DMSO to make 

100 mM solutions. Reaction conditions: (A) 3 µL SE in 50% PG; (B) 3 µL SE, 3 µL 4, and 6 µL Et
3
N in 50% 

MeOH; (C) 3 µL SE, 3 µL 4, and 6 µL 29 in 50% PG; (D) 3 µL SE, 3 µL 19, and 6 µL 29 in 50% PG; (E) 3 µL 

SE, 3 µL 20, and 6 µL 29 in 50% PG; (F) 3 µL SE, 3 µL chloramine-T, and 6 µL 29 in 50% PG. The reactant 

mixtures were kept static overnight at room temperature prior to LCMS analysis (210 nm UV traces are shown). 

*Major products of the reaction between chloramine-T and SE. (G) The structures of the major products (32-36) 

from the reaction (B) between 4 and SE were predicted by analysis of their MS data. The corresponding thiol 

precursors were reported[7] from different SE samples. 
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            Conformer 1, RE = 0.46 kcal/mol (25.7%)                  Conformer  2, RE = 0.69 kcal/mol (17.6%) 

         

            Conformer 3, RE = 0 kcal/mol (36.2%)                   

      

             
Figure S18.  Optimized geometries, relative energies, and Boltzmann populations of the calculated lowest-energy 

conformers of 7a at the 6-311+G(2d,p) level in the gas phase. 
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Conformer 1, RE = 1.1 kcal/mol (4.1%)  Conformer  2, RE = 0.06 kcal/mol (21.6%) Conformer 3, RE = 0.69 kcal/mol (7.5%)      

              

                                                 

Conformer 4, RE = 1.0 kcal/mol (4.1%)  Conformer  5, RE = 1.5 kcal/mol (2.0%) Conformer 6, RE = 0.38 kcal/mol (12.6%)  

                  

                

Conformer 7, RE = 0.11 kcal/mol (19.9%)  Conformer  8, RE = 0 kcal/mol (24.0%) Conformer 9, RE = 1.0 kcal/mol (4.1%)                   

            
Figure S19.  Optimized conformers of 7b at the 6-311+G(2d,p) level in the gas phase. 
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            Conformer 1, RE = 0.44 kcal/mol (32.1%)                  Conformer  2, RE = 0 kcal/mol (67.9%) 

             
Figure S20.  Optimized conformers of 8a at the 6-311+G(2d,p) level in the gas phase. 
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            Conformer 1, RE = 1.4 kcal/mol (4.1%)                  Conformer  2, RE = 0 kcal/mol (46.9%) 

                             

            Conformer 3, RE = 1.1 kcal/mol (7.0%)                  Conformer  4, RE = 1.8 kcal/mol (2.1%) 

 

                             

            Conformer 5, RE = 1.4 kcal/mol (4.1%)                  Conformer  6, RE = 0.15 kcal/mol (35.9%) 

           
Figure S21.  Optimized conformers of 8b at the 6-311+G(2d,p) level in the gas phase. 
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Conformer 1, RE = 1.8 kcal/mol (2.5%)  Conformer  2, RE = 1.9 kcal/mol (2.1%) Conformer 3, RE = 0 kcal/mol (51.2%)      

              

                                        

Conformer 4, RE = 0.37 kcal/mol (27.4%)  Conformer  5, RE = 1.4 kcal/mol (5.1%) Conformer 6, RE = 1.6 kcal/mol (3.5%)  

                  

                

Conformer 7, RE = 1.1 kcal/mol (8.2%)                   

           
Figure S22.  Optimized conformers of 12a at the 6-31G(d,p) level in the gas phase. 
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Conformer 1, RE = 0.8 kcal/mol (10.5%)   Conformer  2, RE = 1.5 kcal/mol (3.6%)   Conformer 3, RE = 1.1 kcal/mol (6.7%)      

              

                                    

Conformer 4, RE = 0.9 kcal/mol (9.1%)   Conformer  5, RE = 1.3 kcal/mol (4.5%)  Conformer 6, RE = 1.5 kcal/mol (3.6%)  

                  

                

Conformer 7, RE = 0.6 kcal/mol (15.1%)   Conformer 8, RE = 0 kcal/mol (44.0%)    Conformer 9, RE = 1.6 kcal/mol (2.8%)                   

                  

                  
Figure S23.  Optimized conformers of 12b at the 6-31G(d,p) level in the gas phase. 
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Figure S24. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of compound 3 
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Figure S25. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of compound 3 
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Figure S26. 1H NMR (400 MHz, CDCl3, 25 ℃) spectrum of compound 7 



S38 

 

 

Figure S27. 13C NMR (100 MHz, CDCl3, 25 ℃) spectrum of compound 7 
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Figure S28. 1H-1H COSY (400 MHz, CDCl3, 25 ℃) spectrum of compound 7 
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Figure S29. HSQC (400 MHz, CDCl3, 25 ℃) spectrum of compound 7 
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Figure S30. HMBC (400 MHz, CDCl3, 25 ℃) spectrum of compound 7 
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Figure S31. 1H NMR (400 MHz, CDCl3, 25 ℃) spectrum of compound 8 
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Figure S32. 13C NMR (100 MHz, CDCl3, 25 ℃) spectrum of compound 8 
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Figure S33. 1H-1H COSY (400 MHz, CDCl3, 25 ℃) spectrum of compound 8 
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Figure S34. HSQC (400 MHz, CDCl3, 25 ℃) spectrum of compound 8 
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Figure S35. HMBC (400 MHz, CDCl3, 25 ℃) spectrum of compound 8 
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Figure S36. 1H NMR (500 MHz, methanol-d4, 25 ℃) spectrum of compound 11 
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Figure S37. 13C NMR (125 MHz, methanol-d4, 25 ℃) spectrum of compound 11 
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Figure S38. 1H-1H COSY (500 MHz, methanol-d4, 25 ℃) spectrum of compound 11 
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Figure S39. HMBC (500 MHz, methanol-d4, 25 ℃) spectrum of compound 11 
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Figure S40. 1H NMR (500 MHz, methanol-d4, 25 ℃) spectrum of compound 12 
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Figure S41. 13C NMR (500 MHz, methanol-d4, 25 ℃) spectrum of compound 12 
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Figure S42. 1H-1H COSY (500 MHz, methanol-d4, 25 ℃) spectrum of compound 12 
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Figure S43. HMBC (500 MHz, methanol-d4, 25 ℃) spectrum of compound 12 
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Figure S44. 1H NMR (500 MHz, D2O, 25 ℃) spectrum 
of (-)-methylshikimate 
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Figure S45. 1H NMR (300 MHz, CDCl3, 25 ℃) spectrum of 13 
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Figure S46. 1H NMR (300 MHz, CDCl3, 25 ℃) spectrum of 14 
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Figure S47. 1H NMR (500 MHz, CDCl3, 25 ℃) spectrum of 15 
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Figure S48. 1H NMR (500 MHz, CDCl3, 25 ℃) spectrum of 16 
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Figure S49. 1H NMR (500 MHz, CDCl3, 25 ℃) spectrum of 17 



S61 

 

 

 

Figure S50. 1H NMR (500 MHz, CDCl3, 25 ℃) spectrum of 18 



S62 

 

 

Figure S51. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 19 
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Figure S52. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 19 
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Figure S53. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 20 
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Figure S54. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 20 
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Figure S55. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 21 
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Figure S56. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 21 
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Figure S57. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 21 
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Figure S58. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 21 
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Figure S59. 1H NMR (500 MHz, methanol-d4, 25 ℃) spectrum of 22 



S71 

 

 

Figure S60. 13C NMR (125 MHz, methanol-d4, 25 ℃) spectrum of 22 
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Figure S61. 1H-1H COSY (500 MHz, methanol-d4, 25 ℃) spectrum of 22 
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Figure S62. HSQC (500 MHz, methanol-d4, 25 ℃) spectrum of 22 
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Figure S63. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 23 
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Figure S64. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 23 



S76 

 

 

Figure S65. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 23 
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Figure S66. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 23 
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Figure S67. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 24 
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Figure S68. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 24 
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Figure S69. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 24 
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Figure S70. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 24 
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Figure S71. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 25 
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Figure S72. 13C NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 25 
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Figure S73. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 25 
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Figure S74. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 25 
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Figure S75. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 26 
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Figure S76. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 26 
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Figure S77. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 26 
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Figure S78. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 26 
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Figure S79. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 27 
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Figure S80. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 27 
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Figure S81. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 27 
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Figure S82. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 27 
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Figure S83. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of 28 
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Figure S84. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 28 
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Figure S85. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 28 
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Figure S86. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 28 



S98 

 

 

Figure S87. 1H NMR (500 MHz, methanol-d4, 25 ℃) spectrum of 30 
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Figure S88. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of 30 
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Figure S89. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of 30 
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Figure S90. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of 30 
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Figure S91. HMBC (400 MHz, methanol-d4, 25 ℃) spectrum of 30 
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Figure S92. 1H NMR (400 MHz, methanol-d4, 25 ℃) spectrum of TFA-30 
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Figure S93. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of TFA-30 
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Figure S94. 1H-1H COSY (400 MHz, methanol-d4, 25 ℃) spectrum of TFA-30 
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Figure S95. HSQC (400 MHz, methanol-d4, 25 ℃) spectrum of TFA-30 
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Figure S96. HMBC (400 MHz, methanol-d4, 25 ℃) spectrum of TFA-30 
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Figure S97. 13C NMR (100 MHz, methanol-d4, 25 ℃) spectrum of [13C]-labeled 30 
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Figure S98. 1H NMR (400 MHz, CDCl3, 25 ℃) spectrum of 31 
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Figure S99. 13C NMR (100 MHz, CDCl3, 25 ℃) spectrum of 31 
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Figure S100. 1H-1H COSY (400 MHz, CDCl3, 25 ℃) spectrum of 31 
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Figure S101. HSQC (400 MHz, CDCl3, 25 ℃) spectrum of 31 
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Figure S102. HMBC (400 MHz, CDCl3, 25 ℃) spectrum of 31 
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Figure S103. 1H NMR (500 MHz, DMSO-d6, 25 ℃) spectrum of 31 
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Figure S104. 1H-1H COSY (500 MHz, DMSO-d6, 25 ℃) spectrum of 31 
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Figure S105. HSQC (500 MHz, DMSO-d6, 25 ℃) spectrum of 31 
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