1	Supporting Information	
2	Sorbic Acid as a Triplet Probe: Triplet Energy and Reactivity with	Triplet-
3	State Dissolved Organic Matter via ¹ O ₂ Phosphorescence	
4		
5	Kyle J. Moor, Markus Schmitt, Paul R. Erickson, and Kristopher McNeill*	
6		
7	Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environ	mental
8	Systems Science, ETH Zurich, 8092 Zurich, Switzerland	
9		
10	Pages: 35	
11	Figures: 31	
12	Tables: 4	
13		
14	Table of Contents	
15	Section 1. ¹ O ₂ Phosphorescence Data Fitting Procedures	S2
16	Section 2. Low-Temperature Phosphorescence	S5
17	Section 3. Transient Absorption Measurements	S6
18	Section 4. Sorbic Acid Quenching of Model Sensitizer Triplets	S10
19	Section 5. Sorbic Acid Quenching of ³ CDOM*	S15
20	Section 6. Comparing k_{HDA} from Single Pool and Two-Pool Fitting Approaches	
21	Section 7. Past Estimates of Triplet Distribution in CDOM	S34

22 Section 1. ¹O₂ Phosphorescence Data Fitting Procedures

23 Global Kinetic Fitting Approach

Following methodology outlined in a previous report, time-resolved ¹O₂ phosphorescence traces were fit with an equation that describes ¹O₂ growth and decay kinetics, essentially a parameterized biexponential growth and decay function, which is governed by the kinetic processes that affect ³CDOM* and ¹O₂ (eq. S1).¹

28

29
$$[S]_{t} = \frac{A_{0}k_{O_{2}}[O_{2}]}{k_{d}^{\Delta} - k_{HDA}[HDA] - k_{d}^{T} - k_{O_{2}}[O_{2}]} \left[e^{-(k_{O_{2}}[O_{2}] + k_{HDA}[HDA] + k_{d}^{T})t} - e^{-(k_{d}^{\Delta})t} \right]$$
S1

30

31 Rate constants are described in Figure 2a and in the kinetic analysis discussion of the main 32 report. A_0 is the scaling parameter that accounts for instrumental response and ¹O₂ yields from 33 excited triplet states.

34

36

37 where κ is an instrument response factor, k_r^{Δ} is the ¹O₂ radiative emission rate, f_{Δ} is the fraction 38 of O₂ quenching events that produce ¹O₂, and [³CDOM*]₀ is the initial concentration of 39 ³CDOM*. An identical kinetic scheme is valid for model triplet sensitizers. As discussed in 40 the main report, the quenching of ¹O₂ by HDA (k_{HDA}^{Δ}) is negligible compared to ¹O₂ loss by 41 non-radiative relaxation (k_d^{Δ}) and is thus omitted from eq. S1.

The overall fitting approach consisted of simultaneously solving for A₀, which was shared among the different kinetic traces, and k_{HDA} using the input of rate constants that varied depending on the sensitizer. An exception is k_d^{Δ} , which was fixed at 2.76 ×10⁵ s⁻¹ for all sensitizers.² Generally, k_d^T values were used from the literature^{1, 3, 4} and $k_{O_2}[O_2]$ values were 46 determined by fitting the ¹O₂ kinetic trace at [HDA] = 0. For CDOM, an average k_d^T value of 47 9×10⁴ s⁻¹ was used based on a previous report.¹ Table S1 displays the rate constants used for 48 each sensitizer.

49

Sensitizer	$k_d^T (10^4 \mathrm{s}^{-1})$	$k_{O_2}[O_2] (10^6 \text{ s}^{-1})$	
PN	1.3	2.39	
CBBP	6.45	1.88	
CBBP/PN	3.88	2.24	
CDOM	9.0	1.14-1.98	

Table S1 Rate constants used in global kinetic fits for various sensitizers.

50

51 Inverse First Order Fitting Approach

52 An equation was developed to calculate unquenchable fractions of the ${}^{1}O_{2}$ 53 phosphorescence and quenching rate constants of triplets by HDA. Integrating the ${}^{1}O_{2}$ 54 phosphorescence signal (eq. S1) yields the area of the ${}^{1}O_{2}$ signal, which includes the scaling 55 parameter A₀ (eq. S3):

56

57
$$Area = \frac{A_0 k_{O_2}[O_2]}{(k_{O_2}[O_2] + k_d^T + k_{HDA}[HDA])(k_d^{\Delta})}$$
 S3

58

Normalizing the ${}^{1}O_{2}$ phosphorescence area (*S*) at a given HDA concentration by the ${}^{1}O_{2}$ phosphorescence area at [HDA] = 0 (*S*₀) yields eq. S4, an inverse first-order equation, which includes a factor *b*, which is the ratio of triplet quenching by HDA to other loss pathways (eq. S5):

66
$$b = \frac{k_{HDA}}{k_d^T + k_{O_2}[O_2]}$$

67

where α represents the fraction of triplets that are not quenched by HDA. Experimentally collected ¹O₂ phosphorescence signals were integrated, yielding areas, normalized to the ¹O₂ phosphorescence area at [HDA] = 0, and fit with eq. S4. For CDOM and the CBBP/PN validation mixture, ¹O₂ phosphorescence traces were fit with a generalized form of eq. S1, essentially a generic growth and decay biexponential equation (eq. S6), and the resulting fitted curve was used for integration.

74

75
$$[S]_t = \frac{A_0 k_{form}}{k_{decay} - k_{form}} \left(e^{-k_{form}t} - e^{-k_{decay}t} \right)$$
 S6

76

where k_{form} and k_{decay} are the ¹O₂ phosphorescence signal growth and decay rate constants, respectively. For CBBP/PN experiments, a non-normalized form of eq. S4 was used (eq. S7):

81

with the same parameters as described in the main report. Quenching rate constants of triplets by HDA were calculated by multiplying the fit term *b* by the initial growth rate constant of ${}^{1}O_{2}$ phosphorescence at [HDA] = 0, which kinetically is $k_{d}^{T} + k_{O_{2}}[O_{2}]$.

- 85
- 86
- 87
- 88

S5

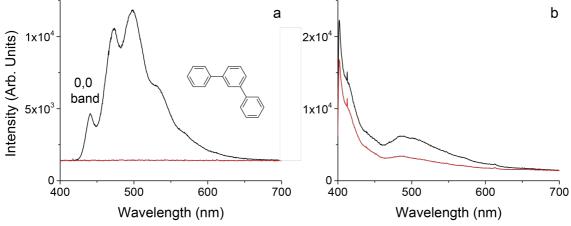
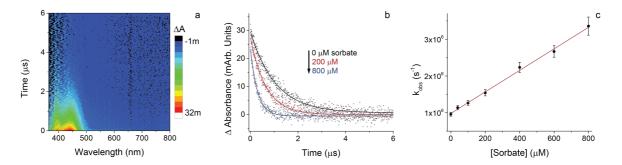


Figure S1 Low temperature phosphorescence emission spectra for (a) m-terphenyl and (b)


EPA solvent blank at 77 (black) and 100 K (red).

91

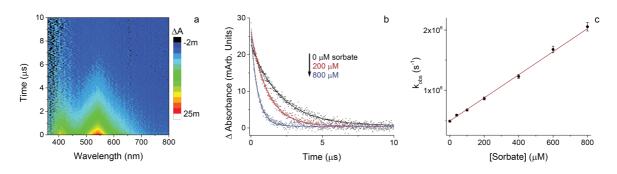
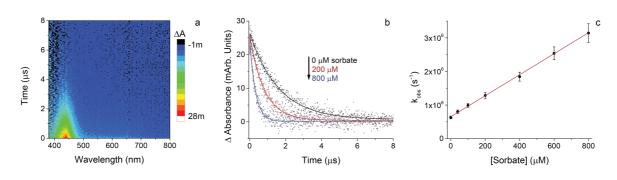
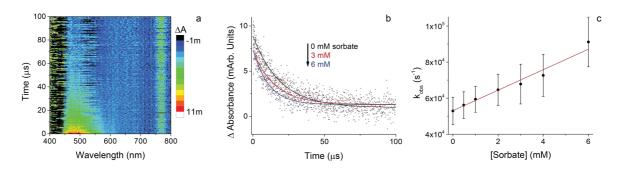

93 Section 3. Transient Absorption Measurements

Table S2 Transient absorption spectroscopy experimental details used for measuringquenching rate constants of sensitizer triplets by HDA. Bimolecular rate constants are $\times 10^9$ M^{-1} s⁻¹ unless otherwise specified.


Sensitizer	Triplet Energy (kJ mol ⁻¹) ^{5,6}	Excitation λ (nm)	λ transient observed (nm)	k _{HDA}
3-Methoxyacetophenone	303	328	433; 438; 444	2.89 (±0.10)
4-Benzoylbenzoic acid	286	305	532; 542; 552	1.93 (±0.04)
2-Acetonaphthone	249	328	430; 438; 444	3.15 (±0.12)
Riboflavin	209	450	681; 710; 728	0.12 (±0.01)
Perinaphthenone	186	380	476; 481; 486	$5.3 (\pm 0.6) \times 10^{6}$
Rose Bengal	171	552	601; 604; 610	$1.8 (\pm 0.3) \times 10^5$


Figure S2 (a) 3-D transient absorption spectrum for ³3MAP* at [HDA] = 0. (b) Kinetic traces for ³3MAP* transient decay monitored at 440 nm under 20% O₂-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ³3MAP* decay rate constant as a function of added HDA quencher determined from ³3MAP* transient decay monitored at 440 nm (data presented in b).

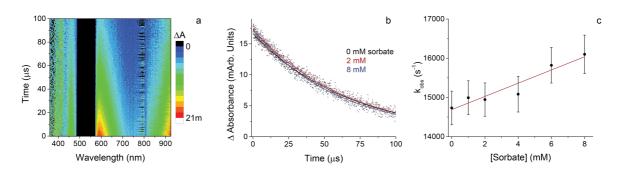

Figure S3 (a) 3-D transient absorption spectrum for ³CBBP* at [HDA] = 0. (b) Kinetic traces for ³CBBP* transient decay monitored at 542 nm under 20% O₂-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ³CBBP* decay rate constant as a function of added HDA quencher determined from ³CBBP* transient decay monitored at 542 nm (data presented in b).

Figure S4 (a) 3-D transient absorption spectrum for ${}^{3}2AN*$ at [HDA] = 0. (b) Kinetic traces for ${}^{3}2AN*$ transient decay monitored at 438 nm under 20% O₂-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ${}^{3}2AN*$ decay rate constant as a function of added HDA quencher determined from ${}^{3}2AN*$ transient decay monitored at 438 nm (data presented in b).

Figure S5 (a) 3-D transient absorption spectrum for ³PN* at [HDA] = 0. (b) Kinetic traces for ³PN* transient decay monitored at 486 nm under N₂O-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ³PN* decay rate constant as a function of added HDA quencher determined from ³PN* transient decay monitored at 486 nm (data presented in b).

Figure S6 (a) 3-D transient absorption spectrum for ${}^{3}RB*$ at [HDA] = 0. (b) Kinetic traces for ${}^{3}RB*$ transient decay monitored at 601 nm under Ar-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ${}^{3}RB*$ decay rate constant as a function of added HDA quencher determined from ${}^{3}RB*$ transient decay monitored at 601 nm (data presented in b).

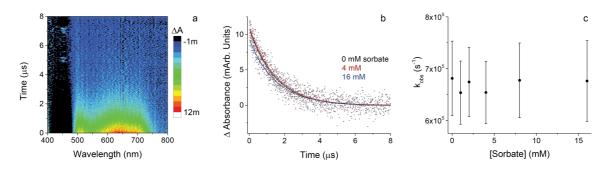
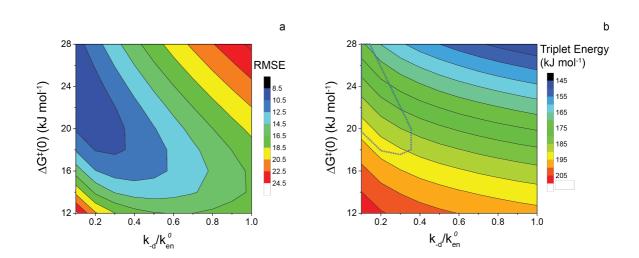



Figure S7 (a) 3-D transient absorption spectrum for ³riboflavin* in methanol at [HDA] = 0. (b) Kinetic traces for ³riboflavin* transient decay monitored at 650 nm under 5% O₂-purged conditions with increasing amounts of HDA. (c) Stern-Volmer plot displaying ³riboflavin* decay rate constant as a function of added HDA quencher determined from ³riboflavin* transient decay monitored at 650 nm (data presented in b).

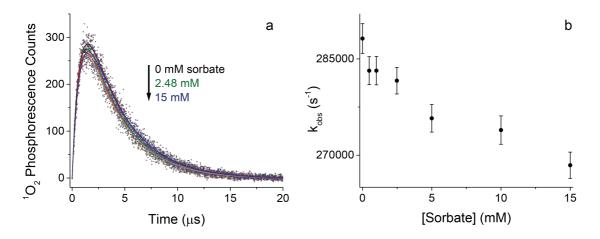
Figure S8 Contour plots showing (a) RMSE of fits and (b) calculated triplet energy based on the parameters $\Delta G^{\ddagger}(0)$ and k_{-d}/k_{en}^{0} used to fit the quenching of model sensitizer triplets by HDA with eq. 1. The dashed-line in panel b represents the parameter range that yielded RMSE less than 10.5 that was used to calculate the average triplet energy of HDA.

101

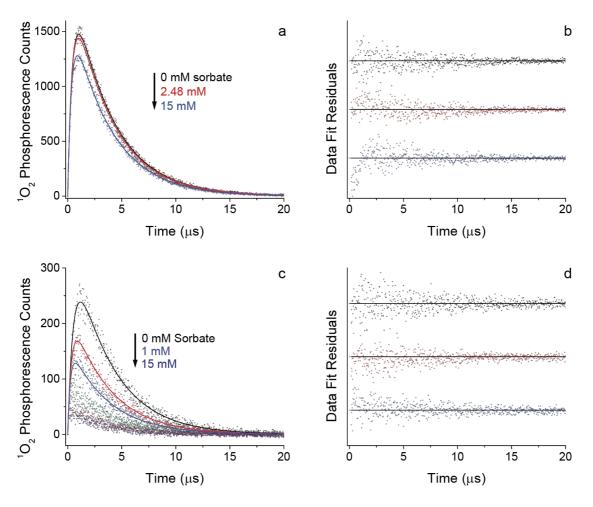
104 Section 4. Sorbic Acid Quenching of Model Sensitizer Triplets

105

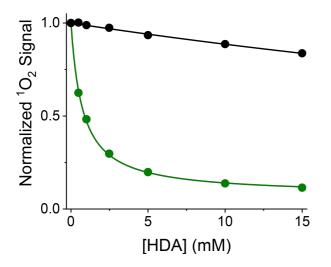
106 Screening Factor for CBBP/PN Sensitizer Mixture

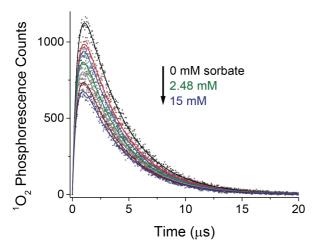

107 A screening factor (S_{λ}) was applied to the unquenchable ${}^{1}O_{2}$ phosphorescence signal 108 area produced by the CBBP/PN mixture to account for light screening by CBBP using eq. S8: 109

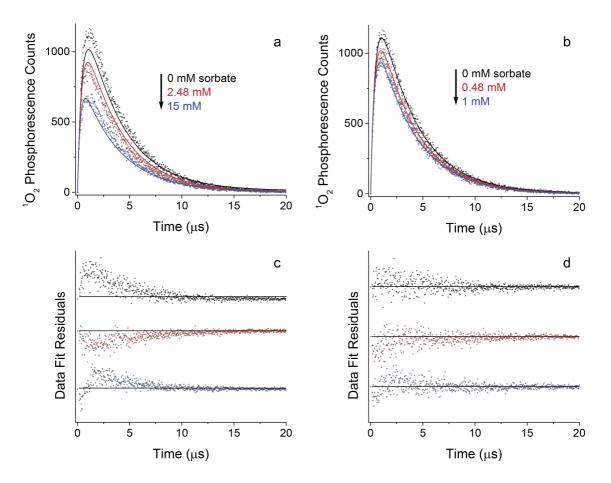
110
$$S_{\lambda} = \frac{1 - 10^{-l \times \alpha_{\lambda}}}{2.303 \times l \times \alpha_{\lambda}}$$
 S8


111

112 where α_{λ} is the solution absorbance (cm⁻¹) and *l* the experimental path length (cm).


113


Figure S9 (a) Time-resolved ${}^{1}O_{2}$ phosphorescence traces for ZnTMPyP ($\lambda_{ex} = 450$ nm) as a function of added HDA. Solid lines are the generic biexponential kinetic fits described in the text. (b) Decay rate constants of the biexponential fits in panel a, plotted as a function of [HDA].


Figure S10 Time-resolved ¹O₂ phosphorescence traces for (a) PN ($\lambda_{ex} = 340$ nm) and (c) CBBP ($\lambda_{ex} = 340$ nm) as a function of added HDA. Solid lines are the global kinetic fits as described in the text with associated residuals – displayed adjacent to the fits – in panels b and d.

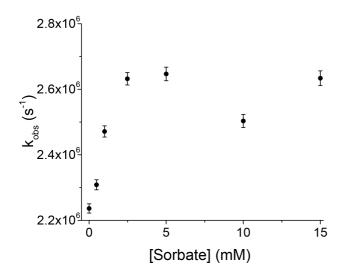
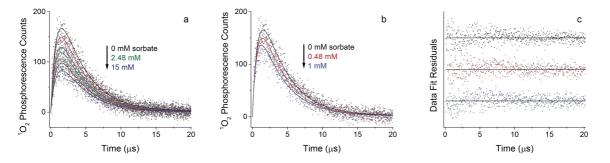

Figure S11 Normalized ¹O₂ phosphorescence signal areas as a function of added HDA for PN (black) and CBBP (green). Solid lines are the inverse first order fits described in the text.

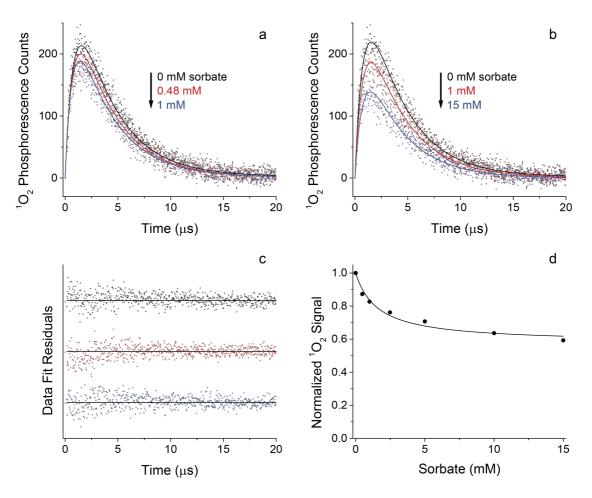
Figure S12 Time-resolved ¹O₂ phosphorescence traces for CBBP/ PN mixture ($\lambda_{ex} = 340$ nm) as a function of added HDA. Solid lines are the generic biexponential kinetic fits described in the text.

Figure S13 Time-resolved ¹O₂ phosphorescence traces for CBBP/PN mixture ($\lambda_{ex} = 340$ nm) as a function of added HDA fit at (a) high and (b) low [HDA]. Solid lines are the global kinetic fits described in the text. Residuals of global kinetic fits at (c) high and (d) low [HDA].

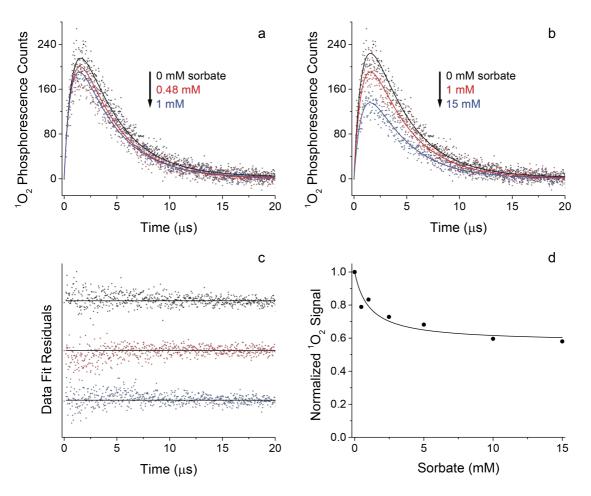
Figure S14 ¹O₂ phosphorescence growth rate constant (k_{obs}) produced by CBBP/ PN mixture ($\lambda_{ex} = 340$ nm) as a function of HDA quencher. k_{obs} was calculated using a generic growth and decay equation.

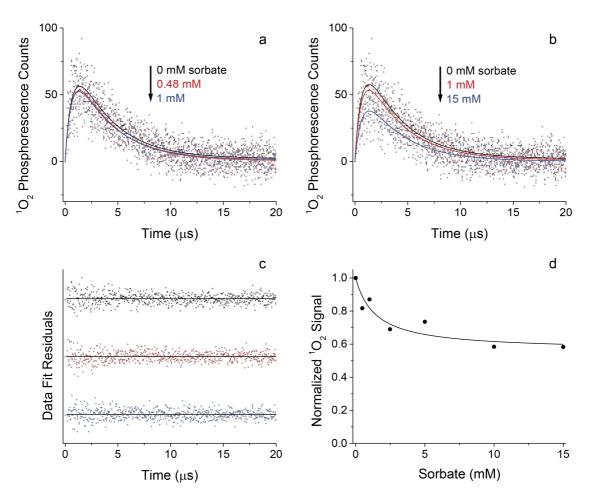

132 Section 5. Sorbic Acid Quenching of ³CDOM*

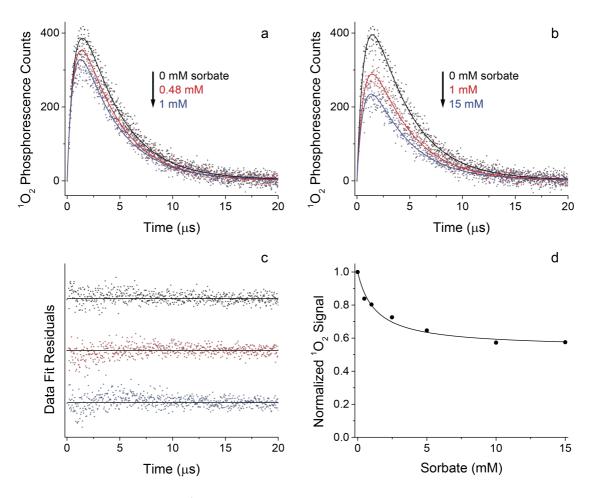
133

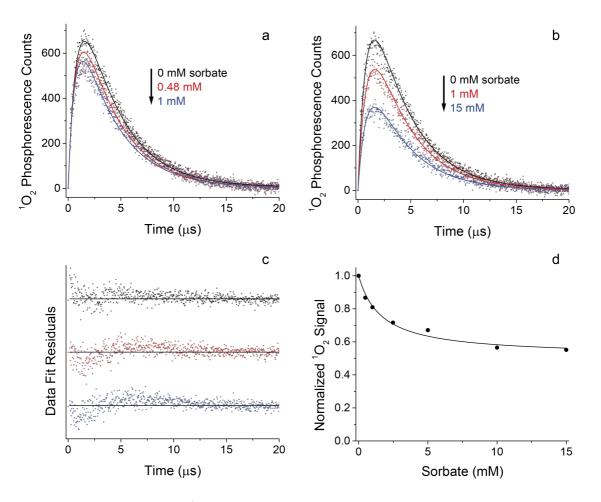

134 Reproducibility of Quenching Experiments

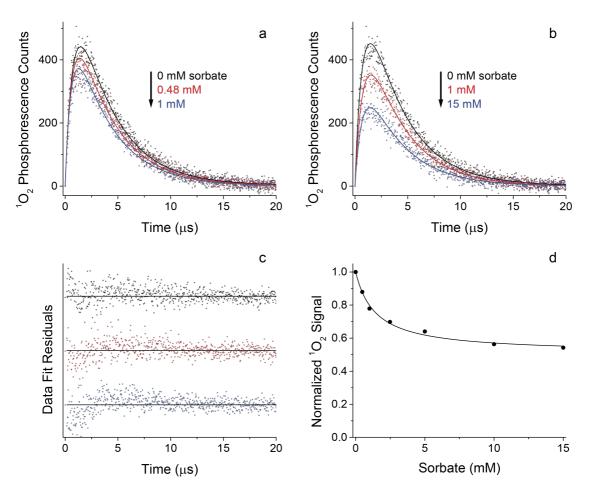
135Reproducibility of the measured rate constants was assessed by repeating HDA136quenching experiments of MRNOM in triplicate. The resulting values were quite similar (3.0137 $\pm 0.1, 2.8 \pm 0.1, \text{ and } 2.8 \pm 0.1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$) with a standard deviation of less than 5% between138the values.

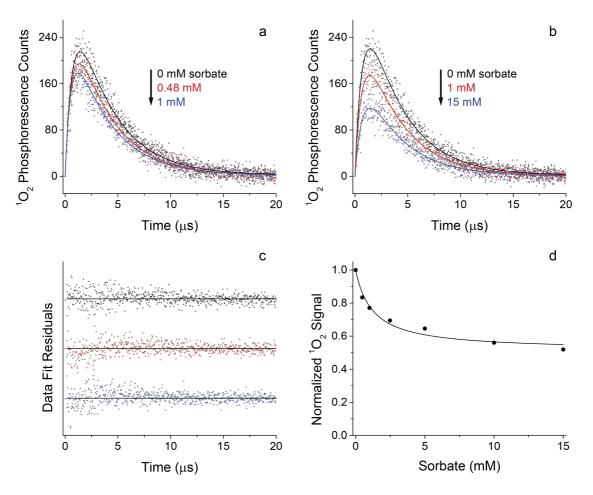

139

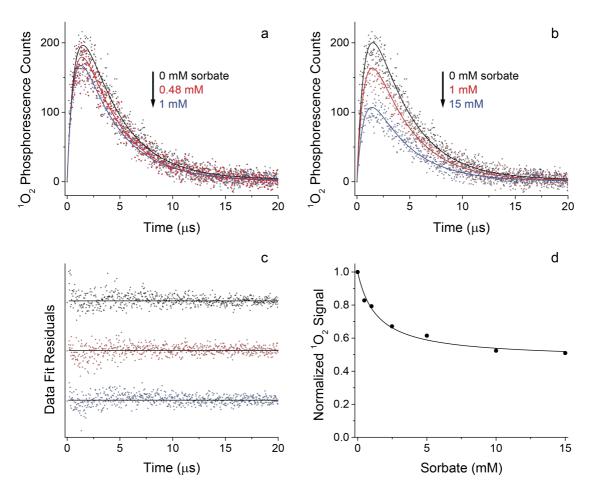

Figure S15 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for SRNOM as a function of added HDA with (a) generic biexponential growth and decay and (b) global kinetic fitting. (c) Residuals of global kinetic fits from associated traces in panel b.

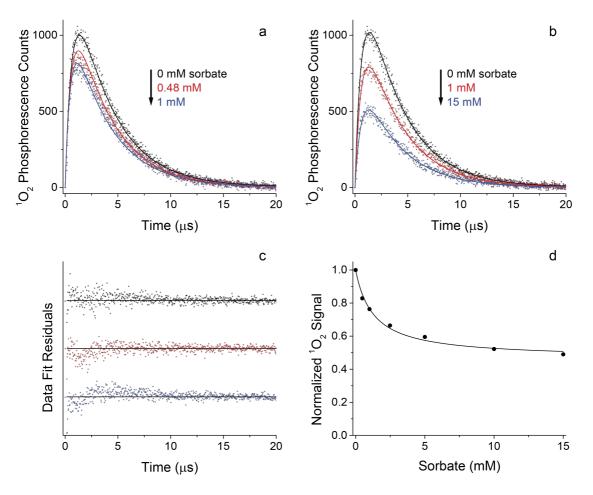

Figure S16 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for SRFA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ${}^{1}O_{2}$ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

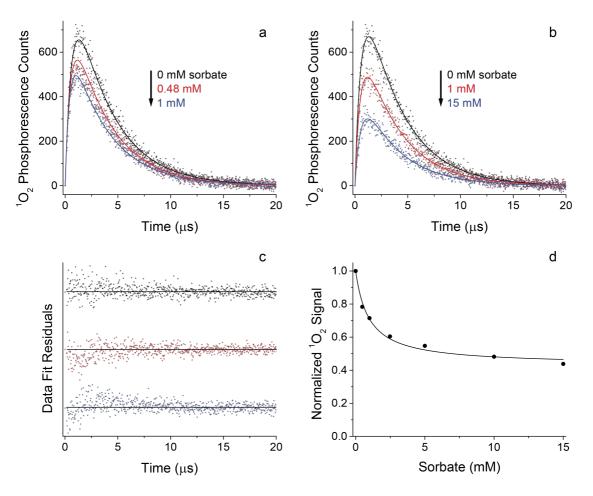

Figure S17 Time-resolved ¹O₂ phosphorescence traces for Great Dismal Swamp whole water as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

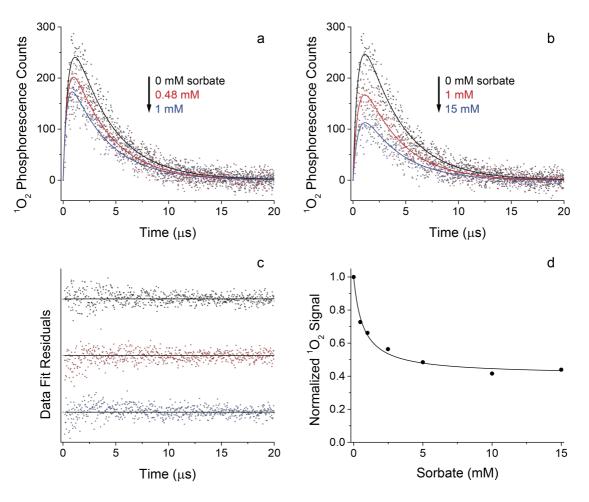

Figure S18 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for SRHA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ${}^{1}O_{2}$ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

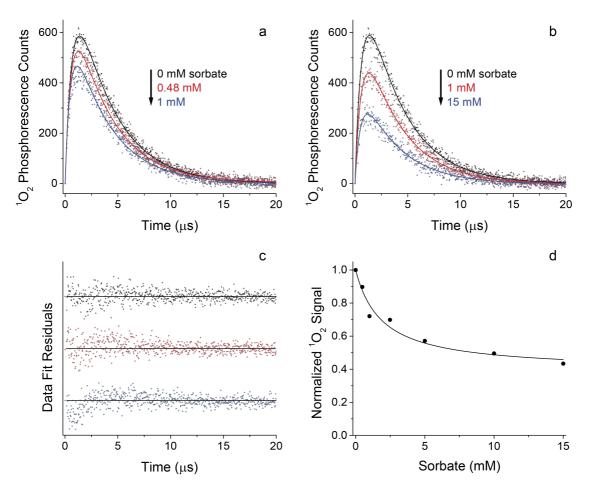

Figure S19 Time-resolved ¹O₂ phosphorescence traces for Nordic Lake NOM as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

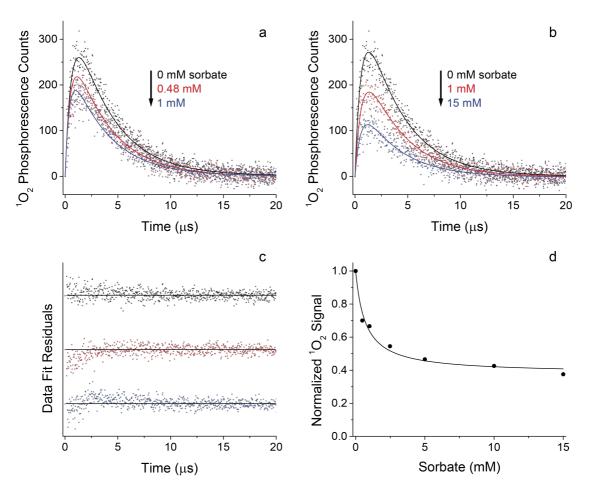

Figure S20 Time-resolved ¹O₂ phosphorescence traces for Everglades TPIA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

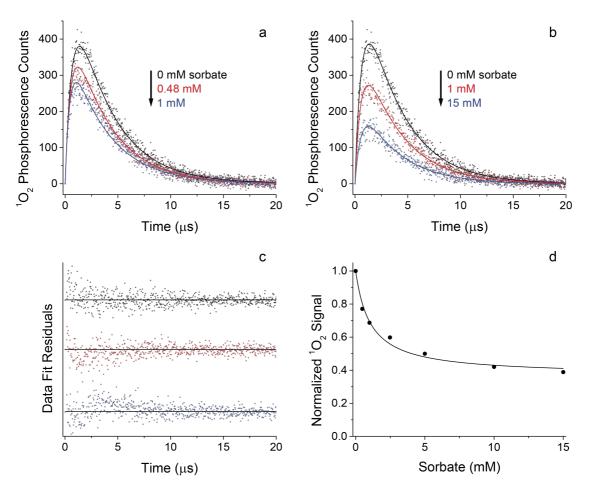

Figure S21 Time-resolved ¹O₂ phosphorescence traces for Everglades HPOA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

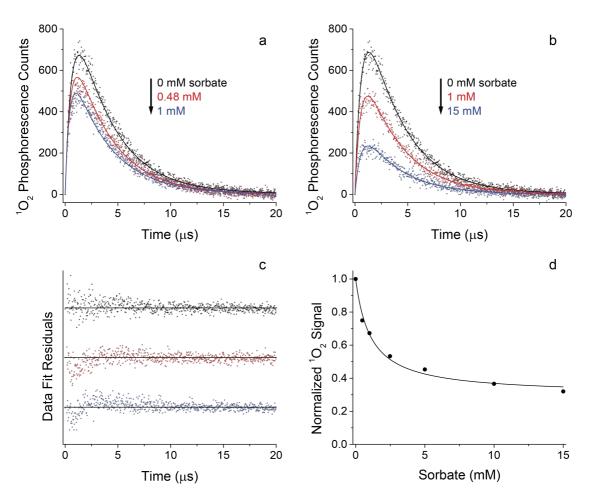

Figure S22 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for Lake Bradford whole water as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ${}^{1}O_{2}$ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.


Figure S23 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for Mississippi River NOM as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ${}^{1}O_{2}$ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.


Figure S24 Time-resolved ¹O₂ phosphorescence traces for Everglades HPON as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.


Figure S25 Time-resolved ¹O₂ phosphorescence traces for Williams Lake HPON as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.


Figure S26 Time-resolved ¹O₂ phosphorescence traces for Pacific Ocean HPOA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.


Figure S27 Time-resolved ¹O₂ phosphorescence traces for Williams Lake HPOA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

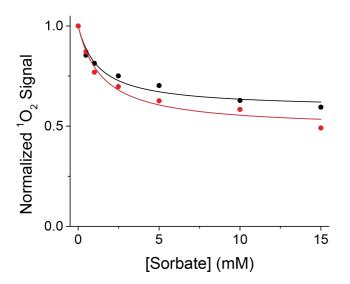

Figure S28 Time-resolved ${}^{1}O_{2}$ phosphorescence traces for Williams Lake TPIA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ${}^{1}O_{2}$ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

Figure S29 Time-resolved ¹O₂ phosphorescence traces for Pony Lake FA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

Figure S30 Time-resolved ¹O₂ phosphorescence traces for Lake Fryxell FA as a function of added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting. (c) Residuals of global kinetic fits from associated traces in panel a. (d) Normalized ¹O₂ phosphorescence signal area as a function of added HDA from data in panel b. Solid line is the inverse first order fit.

Figure S31 Normalized ¹O₂ phosphorescence signal area as a function of added HDA for SRNOM in methanol (black) and water (red). Solid lines are the inverse first order fits.

159	Section 6. Comparing <i>k_{HDA}</i> from Single Pool and Two-Pool Fitting Approaches
160	
161	To compare k_{HDA} values determined from the single pool and two-pool fitting
162	approaches, a k_{HDA} value for all triplets in CDOM (k_{AVG}) was calculated using eq. S9:
163	
164	$k_{AVG} = \alpha_{low} k_{low} + (1 - \alpha_{low}) k_{high} $ S9
165	
166	where α_{low} is the unquenchable fraction determined from the two-pool fitting approach, k_{low}
167	is k_{HDA} for the low energy triplet pool (assumed to equal 0), and k_{high} is k_{HDA} for the high
168	energy triplet pool determined from the two-pool fitting approach. Calculated k_{AVG} values are
169	compared to k_{HDA} values determined with the single pool fitting approach in Table S3.
170	

Table S3 Rate constants of HDA quenching of ³CDOM* for various DOM sources determined with eq. S8 (k_{AVG}) and global kinetic fitting (k_{HDA}).

DOM	$k_{AVG} \ (10^8 \mathrm{M}^{-1} \mathrm{s}^{-1})$	$k_{HDA} (10^8 \mathrm{M}^{-1} \mathrm{s}^{-1})$ Global Kinetic
Suwannee River FA	3.4 (±0.8)	2.2 (±0.1)
Great Dismal Swamp	5.0 (±2.0)	2.1 (±0.1)
Suwannee River HA	4.9 (±2.4)	1.2 (±0.4)
Nordic Lake NOM	5.0 (±1.0)	3.3 (±0.1)
Everglades TPIA	3.7 (±0.7)	2.6 (±0.1)
Everglades HPOA	4.7 (±0.7)	3.3 (±0.1)
Lake Bradford	5.7 (±1.3)	3.8 (±0.1)
Mississippi River NOM	3.7 (±0.9)	2.9 (±0.1)
Suwannee River NOM	4.3 (±1.0)	3.6 (±0.1)
Everglades HPON	6.4 (±1.0)	4.6 (±0.1)

Williams Lake HPON	9.9 (±1.6)	7.2 (±0.1)
Pacific Ocean HPOA	17.9 (±3.0)	10.2 (±0.3)
Williams Lake HPOA	4.9 (±1.3)	5.3 (±0.1)
Williams Lake TPIA	14.5 (±3.0)	8.2 (±0.2)
Pony Lake FA	9.2 (±1.6)	7.4 (±0.1)
Lake Fryxell FA	10.4 (±1.6)	8.0 (±0.1)

178 Section 7. Past Estimates of Triplet Distribution in CDOM

179

Table S4 Data from Zepp et al.⁷ updated using an assumed f_{Δ} value of 0.95 and a revised k_{o_2} value for ³CDOM*(9 × 10⁸ M⁻¹ s⁻¹),^{1,8} which affects the calculation of [³CDOM*] > 94 kJ mol⁻¹ and thus impacts α .

Water Sample	[¹ O ₂] (10 ⁻¹³ M)	[³ CDOM*] > 94 kJ mol ⁻¹ (10 ⁻¹³ M)	$[{}^{3}CDOM*]$ > 250 kJ mol ⁻¹ (10 ⁻¹³ M)	α
Aucilla River	4.4	5.7	1.0	0.82
Suwannee River	4.1	5.3	0.7	0.87
Wylde Lake humus	2.5	3.2	0.4	0.89
Ohio River fulvic acid	9.4	12.1	1.8	0.85
Fluka AG humic acid	4.1	5.3	0.3	0.94
Aldrich humic acid	3.8	4.9	1.0	0.80
Contech fulvic acid	3.8	4.9	0.6	0.88

180

181 References

Erickson, P. R.; Moor, K. J.; Werner, J. J.; Latch, D. E.; Arnold, W. A.; McNeill,
 K., Singlet Oxygen Phosphorescence as a Probe for Triplet-State Dissolved Organic
 Matter Reactivity. *Environmental Science & Technology* **2018**, *52*, (16), 9170-9178.
 Appiani, E.; Ossola, R.; Latch, D.; Erickson, P. R.; McNeill, K., Aqueous

singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt
 content. *Environmental Science: Processes & Impacts* 2017, 19, (4), 507-516.

188 3. Wenk, J.; Eustis, S. N.; McNeill, K.; Canonica, S., Quenching of Excited 189 Triplet States by Dissolved Natural Organic Matter. *Environmental Science* &

190 *Technology* **2013**, *47*, (22), 12802-12810.

4. Canonica, S.; Hellrung, B.; Wirz, J., Oxidation of Phenols by Triplet Aromatic
Ketones in Aqueous Solution. *The Journal of Physical Chemistry A* **2000**, *104*, (6),
1226-1232.

194 5. McNeill, K.; Canonica, S., Triplet state dissolved organic matter in aquatic 195 photochemistry: reaction mechanisms, substrate scope, and photophysical

196 properties. *Environmental Science: Processes & Impacts* **2016**, *18*, (11), 1381-1399.

197 6. Flors, C.; Nonell, S., On the Phosphorescence of 1H-Phenalen-1-one.

198 Helvetica Chimica Acta **2001**, 84, (9), 2533-2539.

199 7. Zepp, R. G.; Schlotzhauer, P. F.; Sink, R. M., Photosensitized transformations

200 involving electronic energy transfer in natural waters: role of humic substances.

201 *Environmental Science & Technology* **1985**, *19*, (1), 74-81.

- 202 8. Zhou, H.; Yan, S.; Lian, L.; Song, W., Triplet-State Photochemistry of
- 203

Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions. *Environmental Science & Technology* **2019**, *53*, (5), 2482-2490. 204