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Section 1. 1O2 Phosphorescence Data Fitting Procedures 22 

Global Kinetic Fitting Approach 23 

 Following methodology outlined in a previous report, time-resolved 1O2 24 

phosphorescence traces were fit with an equation that describes 1O2 growth and decay kinetics, 25 

essentially a parameterized biexponential growth and decay function, which is governed by the 26 

kinetic processes that affect 3CDOM* and 1O2 (eq. S1).1 27 

 28 
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 30 

Rate constants are described in Figure 2a and in the kinetic analysis discussion of the main 31 

report.   A0 is the scaling parameter that accounts for instrumental response and 1O2 yields from 32 

excited triplet states. 33 

 34 
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 36 

where 𝜅 is an instrument response factor, 𝑘@∆ is the 1O2 radiative emission rate, f∆ is the fraction 37 

of O2 quenching events that produce 1O2, and [3CDOM*]0 is the initial concentration of 38 

3CDOM*.  An identical kinetic scheme is valid for model triplet sensitizers.  As discussed in 39 

the main report, the quenching of 1O2 by HDA (𝑘23&∆ ) is negligible compared to 1O2 loss by 40 

non-radiative relaxation (𝑘H∆) and is thus omitted from eq. S1. 41 

 The overall fitting approach consisted of simultaneously solving for A0, which was 42 

shared among the different kinetic traces, and kHDA using the input of rate constants that varied 43 

depending on the sensitizer.  An exception is 𝑘H∆, which was fixed at 2.76 ×105 s-1 for all 44 

sensitizers.2  Generally, 𝑘HJ values were used from the literature1, 3, 4 and 𝑘+*[𝑂K] values were 45 
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determined by fitting the 1O2 kinetic trace at [HDA] = 0.  For CDOM, an average 𝑘HJ value of 46 

9 ×104 s-1 was used based on a previous report.1  Table S1 displays the rate constants used for 47 

each sensitizer.   48 

 49 

Table S1 Rate constants used in global kinetic fits for various sensitizers. 
 

Sensitizer 𝑘HJ (104 s-1) 𝑘+*[𝑂K] (106 s-1) 

PN 1.3 2.39 

CBBP 6.45 1.88 

CBBP/PN 3.88 2.24 

CDOM 9.0 1.14-1.98 
 50 

Inverse First Order Fitting Approach 51 

An equation was developed to calculate unquenchable fractions of the 1O2 52 

phosphorescence and quenching rate constants of triplets by HDA. Integrating the 1O2 53 

phosphorescence signal (eq. S1) yields the area of the 1O2 signal, which includes the scaling 54 

parameter A0 (eq. S3): 55 

 56 
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 58 

Normalizing the 1O2 phosphorescence area (S) at a given HDA concentration by the 1O2 59 

phosphorescence area at [HDA] = 0 (S0) yields eq. S4, an inverse first-order equation, which 60 

includes a factor b, which is the ratio of triplet quenching by HDA to other loss pathways (eq. 61 

S5): 62 

 63 
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 67 

where 𝛼 represents the fraction of triplets that are not quenched by HDA. Experimentally 68 

collected 1O2 phosphorescence signals were integrated, yielding areas, normalized to the 1O2 69 

phosphorescence area at [HDA] = 0, and fit with eq. S4.  For CDOM and the CBBP/PN 70 

validation mixture, 1O2 phosphorescence traces were fit with a generalized form of eq. S1, 71 

essentially a generic growth and decay biexponential equation (eq. S6), and the resulting fitted 72 

curve was used for integration. 73 

 74 

[𝑆]$ =
&'(UVWX

(,YZ[\.(UVWX
7𝑒.(UVWX$ − 𝑒.(,YZ[\$9       S6 75 

 76 

where kform and kdecay are the 1O2 phosphorescence signal growth and decay rate constants, 77 

respectively.  For CBBP/PN experiments, a non-normalized form of eq. S4 was used (eq. S7): 78 

 79 
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      81 

with the same parameters as described in the main report.  Quenching rate constants of triplets 82 

by HDA were calculated by multiplying the fit term b by the initial growth rate constant of 1O2 83 

phosphorescence at [HDA] = 0, which kinetically is 𝑘HJ + 𝑘+*[𝑂K]. 84 

 85 

 86 

 87 

 88 
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Section 2.  Low-Temperature Phosphorescence 89 

 90 

 
Figure S1 Low temperature phosphorescence emission spectra for (a) m-terphenyl and (b) 

EPA solvent blank at 77 (black) and 100 K (red). 

 91 

  92 
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Section 3.  Transient Absorption Measurements 93 

 94 

Table S2  Transient absorption spectroscopy experimental details used for measuring 

quenching rate constants of sensitizer triplets by HDA. Bimolecular rate constants are ×109 

M-1 s-1 unless otherwise specified. 

  

Sensitizer Triplet Energy 
(kJ mol-1)5, 6 

Excitation 
𝜆 (nm) 

𝜆 transient 
observed (nm) kHDA 

3-Methoxyacetophenone 303 328 433; 438; 444 2.89 (±0.10) 

4-Benzoylbenzoic acid 286 305 532; 542; 552 1.93 (±0.04) 

2-Acetonaphthone 249 328 430; 438; 444 3.15 (±0.12) 

Riboflavin 209 450 681; 710; 728 0.12 (±0.01) 

Perinaphthenone 186 380 476; 481; 486 5.3 (±0.6) ×106 

Rose Bengal 171 552 601; 604; 610 1.8 (±0.3) ×105 
 

 95 

 

Figure S2 (a) 3-D transient absorption spectrum for 33MAP* at [HDA] = 0. (b) Kinetic 

traces for 33MAP* transient decay monitored at 440 nm under 20% O2-purged conditions 

with increasing amounts of HDA. (c)  Stern-Volmer plot displaying 33MAP* decay rate 

constant as a function of added HDA quencher determined from 33MAP* transient decay 

monitored at 440 nm (data presented in b).   

 96 
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Figure S3 (a) 3-D transient absorption spectrum for 3CBBP* at [HDA] = 0. (b) Kinetic 

traces for 3CBBP* transient decay monitored at 542 nm under 20% O2-purged conditions 

with increasing amounts of HDA. (c)  Stern-Volmer plot displaying 3CBBP* decay rate 

constant as a function of added HDA quencher determined from 3CBBP* transient decay 

monitored at 542 nm (data presented in b).   
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Figure S4 (a) 3-D transient absorption spectrum for 32AN* at [HDA] = 0. (b) Kinetic 

traces for 32AN* transient decay monitored at 438 nm under 20% O2-purged conditions 

with increasing amounts of HDA. (c)  Stern-Volmer plot displaying 32AN* decay rate 

constant as a function of added HDA quencher determined from 32AN* transient decay 

monitored at 438 nm (data presented in b). 
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Figure S5 (a) 3-D transient absorption spectrum for 3PN* at [HDA] = 0. (b) Kinetic traces 

for 3PN* transient decay monitored at 486 nm under N2O-purged conditions with 

increasing amounts of HDA. (c)  Stern-Volmer plot displaying 3PN* decay rate constant as 

a function of added HDA quencher determined from 3PN* transient decay monitored at 

486 nm (data presented in b).   
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Figure S6 (a) 3-D transient absorption spectrum for 3RB* at [HDA] = 0. (b) Kinetic traces 

for 3RB* transient decay monitored at 601 nm under Ar-purged conditions with increasing 

amounts of HDA. (c)  Stern-Volmer plot displaying 3RB* decay rate constant as a function 

of added HDA quencher determined from 3RB* transient decay monitored at 601 nm (data 

presented in b).   
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Figure S7 (a) 3-D transient absorption spectrum for 3riboflavin* in methanol at [HDA] = 

0. (b) Kinetic traces for 3riboflavin* transient decay monitored at 650 nm under 5% O2-

purged conditions with increasing amounts of HDA. (c)  Stern-Volmer plot displaying 

3riboflavin* decay rate constant as a function of added HDA quencher determined from 

3riboflavin* transient decay monitored at 650 nm (data presented in b).   
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Figure S8 Contour plots showing (a) RMSE of fits and (b) calculated triplet energy based 

on the parameters ∆𝐺‡(0) and k-d/ k0en used to fit the quenching of model sensitizer triplets 

by HDA with eq. 1.  The dashed-line in panel b represents the parameter range that yielded 

RMSE less than 10.5 that was used to calculate the average triplet energy of HDA. 

 102 

  103 
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Section 4. Sorbic Acid Quenching of Model Sensitizer Triplets 104 

 105 

Screening Factor for CBBP/PN Sensitizer Mixture 106 

 A screening factor (𝑆c) was applied to the unquenchable 1O2 phosphorescence signal 107 

area produced by the CBBP/PN mixture to account for light screening by CBBP using eq. S8: 108 

 109 

𝑆c =
O.O=de×fg

K.G=G×i×Pg
          S8 110 

 111 

where 𝛼c is the solution absorbance (cm-1) and l the experimental path length (cm). 112 

 113 

 

Figure S9  (a) Time-resolved 1O2 phosphorescence traces for ZnTMPyP (lex = 450 nm) as 

a function of added HDA.  Solid lines are the generic biexponential kinetic fits described in 

the text.  (b) Decay rate constants of the biexponential fits in panel a, plotted as a function 

of [HDA]. 
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Figure S10 Time-resolved 1O2 phosphorescence traces for (a) PN (lex = 340 nm) and (c) 

CBBP (lex = 340 nm) as a function of added HDA.  Solid lines are the global kinetic fits as 

described in the text with associated residuals – displayed adjacent to the fits – in panels b 

and d. 
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Figure S11 Normalized 1O2 phosphorescence signal areas as a function of added HDA for 

PN (black) and CBBP (green).  Solid lines are the inverse first order fits described in the 

text. 
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Figure S12  Time-resolved 1O2 phosphorescence traces for CBBP/ PN mixture (lex = 340 

nm) as a function of added HDA.  Solid lines are the generic biexponential kinetic fits 

described in the text. 
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Figure S13  Time-resolved 1O2 phosphorescence traces for CBBP/PN mixture (lex = 340 

nm) as a function of added HDA fit at (a) high and (b) low [HDA].  Solid lines are the 

global kinetic fits described in the text.  Residuals of global kinetic fits at (c) high and (d) 

low [HDA]. 
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Figure S14 1O2 phosphorescence growth rate constant (kobs) produced by CBBP/ PN 

mixture (lex = 340 nm) as a function of HDA quencher.  kobs was calculated using a generic 

growth and decay equation. 
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Section 5. Sorbic Acid Quenching of 3CDOM* 132 

 133 

Reproducibility of Quenching Experiments 134 

Reproducibility of the measured rate constants was assessed by repeating HDA 135 

quenching experiments of MRNOM in triplicate.  The resulting values were quite similar (3.0 136 

±0.1, 2.8 ±0.1, and 2.8 ±0.1 ×108 M-1 s-1) with a standard deviation of less than 5% between 137 

the values. 138 

 139 

 

Figure S15  Time-resolved 1O2 phosphorescence traces for SRNOM as a function of added 

HDA with (a) generic biexponential growth and decay and (b) global kinetic fitting.  (c) 

Residuals of global kinetic fits from associated traces in panel b. 

 140 



 S16 

 

Figure S16  Time-resolved 1O2 phosphorescence traces for SRFA as a function of added 

HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting.  (c) 

Residuals of global kinetic fits from associated traces in panel a.  (d) Normalized 1O2 

phosphorescence signal area as a function of added HDA from data in panel b.  Solid line 

is the inverse first order fit. 
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Figure S17  Time-resolved 1O2 phosphorescence traces for Great Dismal Swamp whole 

water as a function of added HDA with (a) global kinetic and (b) generic biexponential 

growth and decay fitting.  (c) Residuals of global kinetic fits from associated traces in 

panel a.  (d) Normalized 1O2 phosphorescence signal area as a function of added HDA 

from data in panel b.  Solid line is the inverse first order fit. 
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Figure S18  Time-resolved 1O2 phosphorescence traces for SRHA as a function of added 

HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting.  (c) 

Residuals of global kinetic fits from associated traces in panel a.  (d) Normalized 1O2 

phosphorescence signal area as a function of added HDA from data in panel b.  Solid line 

is the inverse first order fit. 
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Figure S19  Time-resolved 1O2 phosphorescence traces for Nordic Lake NOM as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S20  Time-resolved 1O2 phosphorescence traces for Everglades TPIA as a function 

of added HDA with (a) global kinetic and (b) generic biexponential growth and decay 

fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S21  Time-resolved 1O2 phosphorescence traces for Everglades HPOA as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S22  Time-resolved 1O2 phosphorescence traces for Lake Bradford whole water as 

a function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S23  Time-resolved 1O2 phosphorescence traces for Mississippi River NOM as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S24  Time-resolved 1O2 phosphorescence traces for Everglades HPON as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S25  Time-resolved 1O2 phosphorescence traces for Williams Lake HPON as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S26  Time-resolved 1O2 phosphorescence traces for Pacific Ocean HPOA as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S27  Time-resolved 1O2 phosphorescence traces for Williams Lake HPOA as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S28  Time-resolved 1O2 phosphorescence traces for Williams Lake TPIA as a 

function of added HDA with (a) global kinetic and (b) generic biexponential growth and 

decay fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S29  Time-resolved 1O2 phosphorescence traces for Pony Lake FA as a function of 

added HDA with (a) global kinetic and (b) generic biexponential growth and decay fitting.  

(c) Residuals of global kinetic fits from associated traces in panel a.  (d) Normalized 1O2 

phosphorescence signal area as a function of added HDA from data in panel b.  Solid line 

is the inverse first order fit. 
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Figure S30  Time-resolved 1O2 phosphorescence traces for Lake Fryxell FA as a function 

of added HDA with (a) global kinetic and (b) generic biexponential growth and decay 

fitting.  (c) Residuals of global kinetic fits from associated traces in panel a.  (d) 

Normalized 1O2 phosphorescence signal area as a function of added HDA from data in 

panel b.  Solid line is the inverse first order fit. 
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Figure S31 Normalized 1O2 phosphorescence signal area as a function of added HDA for 

SRNOM in methanol (black) and water (red).  Solid lines are the inverse first order fits. 
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Section 6. Comparing kHDA from Single Pool and Two-Pool Fitting Approaches 159 

 160 

  To compare kHDA values determined from the single pool and two-pool fitting 161 

approaches, a kHDA value for all triplets in CDOM (kAVG) was calculated using eq. S9: 162 

 163 

𝑘&jk = 𝛼ilm𝑘ilm + (1 − 𝛼ilm)𝑘opqo        S9 164 

 165 

where 𝛼ilm is the unquenchable fraction determined from the two-pool fitting approach, 𝑘ilm 166 

is kHDA for the low energy triplet pool (assumed to equal 0), and 𝑘opqois kHDA for the high 167 

energy triplet pool determined from the two-pool fitting approach. Calculated kAVG values are 168 

compared to kHDA values determined with the single pool fitting approach in Table S3.  169 

 170 

Table S3 Rate constants of HDA quenching of 3CDOM* for various DOM sources 

determined with eq. S8 (kAVG) and global kinetic fitting (𝑘23&). 

DOM 𝑘&jk (108 M-1 s-1) 
 

𝑘23& (108 M-1 s-1) 
Global Kinetic 

Suwannee River FA 3.4 (±0.8) 2.2 (±0.1) 

Great Dismal Swamp 5.0 (±2.0) 2.1 (±0.1) 

Suwannee River HA 4.9 (±2.4) 1.2 (±0.4) 

Nordic Lake NOM 5.0 (±1.0) 3.3 (±0.1) 

Everglades TPIA 3.7 (±0.7) 2.6 (±0.1) 

Everglades HPOA 4.7 (±0.7) 3.3 (±0.1) 

Lake Bradford 5.7 (±1.3) 3.8 (±0.1) 

Mississippi River NOM 3.7 (±0.9) 2.9 (±0.1) 

Suwannee River NOM 4.3 (±1.0) 3.6 (±0.1) 

Everglades HPON 6.4 (±1.0) 4.6 (±0.1) 
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Williams Lake HPON 9.9 (±1.6) 7.2 (±0.1) 

Pacific Ocean HPOA 17.9 (±3.0) 10.2 (±0.3) 

Williams Lake HPOA 4.9 (±1.3) 5.3 (±0.1) 

Williams Lake TPIA 14.5 (±3.0) 8.2 (±0.2) 

Pony Lake FA 9.2 (±1.6) 7.4 (±0.1) 

Lake Fryxell FA 10.4 (±1.6) 8.0 (±0.1) 
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Section 7. Past Estimates of Triplet Distribution in CDOM 178 

 179 

Table S4  Data from Zepp et al.7 updated using an assumed 𝑓∆ value of 0.95 and a revised 

𝑘+* value for 3CDOM*(9 ×108 M-1 s-1),1, 8 which affects the calculation of [3CDOM*] > 94 

kJ mol-1 and thus impacts 𝛼. 

 

Water Sample [1O2] 
(10-13 M) 

[3CDOM*]      
> 94 kJ mol-1 

(10-13 M) 

[3CDOM*]     
> 250 kJ mol-1 

(10-13 M) 
𝛼 

Aucilla River 4.4 5.7 1.0 0.82 
Suwannee River 4.1 5.3 0.7 0.87 

Wylde Lake humus 2.5 3.2 0.4 0.89 

Ohio River fulvic acid 9.4 12.1 1.8 0.85 

Fluka AG humic acid 4.1 5.3 0.3 0.94 
Aldrich humic acid 3.8 4.9 1.0 0.80 

Contech fulvic acid 3.8 4.9 0.6 0.88 
 

 180 
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