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Figure S1: Absorption spectrum of a pristine DPP-T-TT film on quartz. Inset shows the onset
of the absorption spectrum and corresponding extrapolation for band-gap value extraction.

(Measurement performed using a Varian Cary 100 scan UV—vis spectrophotometer).
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Figure §2: For the XPS measurements, we prepared two sets of DPP-T-TT polymer films:
pristine and with PEG additive. Both films were partly covered with 3-4 nm Al layer and XPS
measurements were performed on a bare region (not covered by Al) and an Al-covered region
of each film, as schematically shown in the insets. Figure S2a shows the XPS spectra of the
bare regions of pristine DPP-T-TT (black circles) and DPP-T-TT:PEG (red circles) films. Both
spectra are identical and show a main Cls peak at 285 eV, characteristic of the C- C/C-H bonds
of the polymer. There is no evidence of the PEG characteristic C-O bond expected at 286.45
eV, at the polymer/air interface.! Figure S2b shows the XPS spectra of the Al covered regions
of pristine DPP-T-TT (black circles) and DPP-T-TT:PEG (red circles) films. The spectrum of
the Al-coated pristine DPP-T-TT (black circles) is similar to that of the bare regions with a
weak contribution at around 287.4 eV associated with minor O—C=0 contaminations. In
contrast, the XPS spectrum of the Al-coated region of DPP-T-TT:PEG (red circles) shows a
noticeable contribution at 286.6 eV associated with the C-O characteristics peak of PEG. The
C-O fingerprint of PEG molecule exclusively present at the Al/polymer interface
unambiguously confirm migration of PEG molecules to the Al/polymer interface and the self-

generation of a PEG interlayer at the organic/Al interface.



Equation- SI: The saturation mobility (usat) is calculated using the following equation: 2
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Where, W, L, and C are the transistor channel width, channel length, and capacitance of the
gate insulator per unit area, respectively. Iprain, VGate, and Vn are the measured drain-to-source
current, gate-to-source voltage, and threshold voltage measured from the transfer

characteristics, respectively.

Equation- S2: Field-effect mobility (perr): Obtained by the transconductance (gm) with
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Equation- $3: Change in electron density estimated by parallel capacitance model leads to
derivation of the relationship:*

Ane=CAVr /e
Where, AV is the threshold voltage difference of the devices and e is the elementary charge.
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Figure S$3. Output characteristics comparison of Ca/Al device and PEG/Al devices.
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Figure $4: p-type Transfer characteristics of the DPP-T-TT OFETs on Si-SiO; substrate with

Al contacts with (red circles) and without (black circles) PEG at Vprnin = -20V for
W/L=1000/30. The dashed lines show the corresponding gate currents of each of the devices.



Table T1: Summary of n-channel characteristics of the transistors fabricated in this study:

MOblllty VTh VON RcW Rchannel.w
DPP-T-TT
[em?yv's™] [V] [V] [KQ.cm] [KQ.cm]
Pristine 0.03+0.015 16.1 11+1 209 +50 2.03
With PEG 0.22 +0.04 10 5+0.5 51+10 1.31
With Ca 0.16+£0.02 8.8 8+1 86121 1.30+0.5
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Figure S5: Stability characterization by 10-continuous voltage-transfer scans of inverter
devices based on two identical OFETs, with PEG (red lines) and without PEG (black lines).




Table T2: Calculated values extracted from the GIWAXS analysis:

Alkyl
(100) (200) Alkyl | Amorphous | Amorphous | ..\
d-spacing p
Alkyl Q (A] Alkyl peak | peak area | peak area | peak area | pwHM
area (x10%) | (x10°) OOP (x10%) | IP (x10%)
(A"
DPPT-TT: 0.315,
19.95 2.8 0.195 4 3.55 0.049
PEG bulk 0.62
DPPT-TT 0.315,
19.95 3.5 0.233 4.2 3.72 0.043
bulk 0.62
DPPT- 0.32,
TT:PEG 0.625, 19.63 16 1.37 - 0.048
surface 0.93, 1.25
DPPT-TT 0.315,
19.95 4.7 0.56 - 0.047
surface 0.615
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