[Supplementary Material]

Critical Review: Biogeochemical Networking of Iron, Is It Important in Constructed Wetlands for Wastewater Treatment?

Shubiao Wu⁺*, Jan Vymazal[‡], Hans Brix[§]

 [†] Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
 [‡]Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kymýcká 129, 165 21 Praha 6, Czech Republic

[§] Department of Bioscience, Aarhus University, Aarhus 8000C, Denmark

*Corresponding author. E-mail address: wushubiao@gmail.com

Content of this file:

Pages: 8

Figures: 2 (Figure S1, S2)

Tables: 2 (Table S1, S2)

References

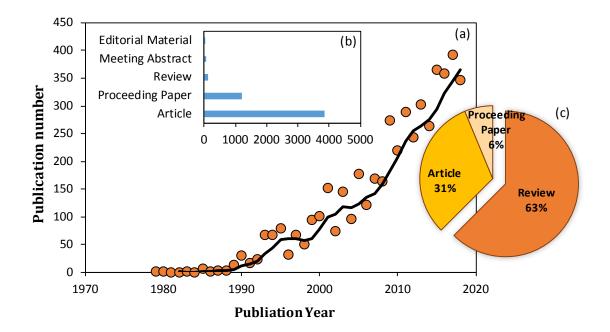


Figure S1 Publication record in the timespan of 1900-2018 in the Web of Science Core Collection by searching for "TITLE: (constructed wetlands) OR TITLE: (treatment wetlands)". (a) Yearly publication record; (b) Document types; (c) Distribution of highly cited papers in field.

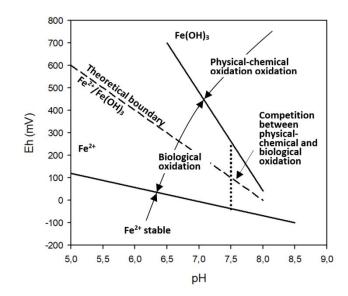


Figure S2 Field of activity of iron bacteria as defined by thermodynamic analysis of the electrochemical equilibria (adapted from Mouchet (1992))

Wastewater Type	Fe concentration (mg/L)	Places	References
Municipal sewage	0.930±1.140	Morina, Czech Republic	1
	2.417±2.860	Brehov, Czech Republic	1
	0.980±0.550	Slavosovice, Czech Republic	1
	2.2-15.3	Kotowice, Poland	2
	0.28-5.2	Kostrzyca, Poland	2
	1.4-7.6	Brzezno, Poland	2
	0.43-0.76	Flanders, Belgium	3
Agricultural runoff	<0.02	Canada	4
	0.038-1.69	Florida, USA	5
	0.17	Arkansa, USA	6

 Table S1. Content of Fe in various wastewaters

Golf course effluent	0.75-1.49	Purdue, USA	7
Highway runoff	0.032-3.31	California, USA	8
	13.2-60.2	Osaka, Japan	9
	9.8-57.9	Stockholm, Sweden	10
Oil refinery wastewater	4-7.5	Rawalpindi, Pakistan	11
	1.4	India	12
	0.33-11.7	Ruwais, UAE	13
Tannery wastewater	3.12	Rouiba, Algiers	14
·	20	Italy	15
Textile	0.28	Taiwan, China	16
	0.83-2.12	Turkey	17
	1.08-3.11	Pakistan	18
	0.11-0.16	Malaysia	19
Landfill Leachate	45±31	Esval, Norway	20
	32±35	Bolstad, Norway	20
	16.2	Wiltshire, UK	21
	27-116	Sundon landfill, UK	21
	11.1	Buckden South leachate, UK	21
	16.9	Siltshire, UK	21
Mine drainage	45	Whittle Colliery, UK	
	170	Athens, USA	22
	2.1-255.6	Tinsukia, India	23
	6.7-650		24
	229	Когеа	25
	105-1400	Canada	26
	44	Jackson, USA	27
	100	Jackson, USA	28
	27-333	Athens, USA	22
	205	Jackson, USA	27
	6.5-33.6	UK	29
	682-45595	Spain	30
	278-688	England, UK	31

Table S2. Use of materials rich in iron as substrate in CWs

Materials Description Refere

Sponge iron	Sponge iron is direct reduced iron, produced from the direct reduction of iron ore to iron by a reducing gas or elemental carbon produced from natural gas or coal.	32, 33
Bauxite	Bauxite is a rock material with a relatively high aluminum content and mixed with the two iron oxides goethite and haematite.	34-37
Fly ash	Fly ash is a waste product from coal combustion, consisting mainly of spherical glassy particles of silica, alumina and iron oxides	38-40
Steel slag	Steel slag is primarily made of iron and calcium oxide, as a result of the use of fluxing agents (mainly lime) during the steelmaking process.	41-44
Drinking water treatment residuals	By-products from drinking water production from surface water in which Al- or Fe-rich flocculants are added to precipitate suspended solids and phytoplankton.	45-48
Emerging materials with iron coating	 Expanded clay with iron oxide coatings; 	49, 50
	 Quartz sand with iron oxide coatings; 	51
	 Sand with iron oxide coatings; 	52
	 Crushed brick with iron oxide coatings. 	52

References

- 1. Kröpfelová, L.; Vymazal, J.; Švehla, J.; Štíchová, J., Removal of trace elements in three horizontal subsurface flow constructed wetlands in the Czech Republic. *Environmental Pollution* **2009**, *157*, (4), 1186-1194.
- Samecka-Cymerman, A.; Stepien, D.; Kempers, A. J., Efficiency in Removing Pollutants by Constructed Wetland Purification Systems in Poland. *Journal of Toxicology and Environmental Health, Part A* 2004, 67, (4), 265-275.
- 3. Lesage, E.; Rousseau, D. P. L.; Meers, E.; Tack, F. M. G.; De Pauw, N., Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. *Science of The Total Environment* **2007**, *380*, (1), 102-115.
- 4. Blowes, D.; Robertson, W.; Ptacek, C.; Merkley, C., Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. *Journal of Contaminant Hydrology* **1994**, *15*, (3), 207-221.
- 5. He, Z. L.; Zhang, M. K.; Calvert, D. V.; Stoffella, P. J.; Yang, X. E.; Yu, S., Transport of Heavy Metals in Surface Runoff from Vegetable and Citrus Fields. *Soil Science Society of America Journal* **2004**, *68*, (5), 1662-1669.
- Edwards, D. R.; Moore Jr, P.; Daniel, T. C.; Srivastava, P.; Nichols, D., Vegetative filter strip removal of metals in runoff from poultry litter-amended fescuegrass plots. *Transactions of the ASAE* 1997, 40, (1), 121-127.
- 7. Kohler, E. A.; Poole, V. L.; Reicher, Z. J.; Turco, R. F., Nutrient, metal, and pesticide removal during storm and nonstorm events by a constructed wetland on an urban golf course. *Ecol. Eng.* **2004**, *23*, (4), 285-298.
- 8. Kayhanian, M.; Suverkropp, C.; Ruby, A.; Tsay, K., Characterization and prediction of highway runoff constituent event mean concentration. *Journal of Environmental Management* **2007**, *85*, (2), 279-295.
- 9. Shinya, M.; Tsuchinaga, T.; Kitano, M.; Yamada, Y.; Ishikawa, M., Characterization of heavy metals and polycyclic aromatic hydrocarbons in urban highway runoff. *Water Science and Technology* **2000**, *42*, (7-8), 201-208.
- 10.Hallberg, M.; Renman, G.; Lundbom, T., Seasonal Variations of Ten Metals in Highway Runoff and their Partition between Dissolved and Particulate Matter. *Water, Air, and Soil Pollution* **2007**, *181*, (1), 183-191.

- 11.Aslam, M. M.; Malik, M.; Baig, M. A.; Qazi, I. A.; Iqbal, J., Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan. *Ecol. Eng.* **2007**, *30*, (1), 34-42.
- 12.Pandey, R. A.; Sanyal, P. B.; Chattopadhyay, N.; Kaul, S. N., Treatment and reuse of wastes of a vegetable oil refinery. *Resources, Conservation and Recycling* **2003**, *37*, (2), 101-117.
- 13.Benyahia, F.; Abdulkarim, M.; Embaby, A.; Rao, M. In *Refinery wastewater treatment: a true technological challenge*, The Seventh Annual UAE University Research Conference. UAE University, 2006; 2006.
- 14.Benhadji, A.; Taleb Ahmed, M.; Maachi, R., Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouïba. *Desalination* **2011**, *277*, (1), 128-134.
- 15.Szpyrkowicz, L.; Kaul, S. N., Biochemical removal of nitrogen from tannery wastewater: performance and stability of a full-scale plant. *Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology* **2004**, *79*, (8), 879-888.
- 16.Lin, S. H.; Chen, M. L., Treatment of textile wastewater by chemical methods for reuse. *Water Research* **1997**, *31*, (4), 868-876.
- 17.Kapdan, I. K.; Alparslan, S., Application of anaerobic–aerobic sequential treatment system to real textile wastewater for color and COD removal. *Enzyme and Microbial Technology* **2005**, *36*, (2), 273-279.
- 18. Imtiazuddin, S.; Mumtaz, M.; Mallick, K. A., Pollutants of wastewater characteristics in textile industries. J Basic Appl Sci 2012, 8, 554-556.
- 19.Lim, S.-L.; Chu, W.-L.; Phang, S.-M., Use of Chlorella vulgaris for bioremediation of textile wastewater. *Bioresource Technology* **2010**, *101*, (19), 7314-7322.
- 20. Mæhlum, T.; Warner, W. S.; Stålnacke, P.; Jenssen, P. D., Leachate treatment in extended aeration lagoons and constructed wetlands in Norway. In *Constructed Wetlands for the Treatment of Landfill Leachates*, Mulamoottil, G., McBean, E.A., Revers, F. (Eds.), Ed. CRC Press: Boca Raton, FL: 1999; pp 151-163.
- 21.Barr, M.; Robinson, H., Constructed wetlands for landfill leachate treatment. *Waste management & research* **1999**, *17*, (6), 498-504.
- 22. Mitsch, W. J.; Wise, K. M., Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. *Water Research* **1998**, *32*, (6), 1888-1900.
- 23. Equeenuddin, S. M.; Tripathy, S.; Sahoo, P. K.; Panigrahi, M. K., Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. *Journal of Geochemical Exploration* **2010**, *105*, (3), 75-82.
- 24. Johnson, D. B., Chemical and Microbiological Characteristics of Mineral Spoils and Drainage Waters at Abandoned Coal and Metal Mines. *Water, Air and Soil Pollution: Focus* **2003**, *3*, (1), 47-66.
- 25. Chon, H.-T.; Hwang, J.-H., Geochemical Characteristics of the Acid Mine Drainage in the Water System in the Vicinity of the Dogye Coal Mine in Korea. *Environmental Geochemistry and Health* **2000**, *22*, (2), 155-172.
- 26. Waybrant, K.; Blowes, D.; Ptacek, C., Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. *Environmental Science & Technology* **1998**, *32*, (13), 1972-1979.
- 27. Mays, P. A.; Edwards, G. S., Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. *Ecol. Eng.* **2001**, *16*, (4), 487-500.
- 28.Ye, Z. H.; Whiting, S. N.; Qian, J. H.; Lytle, C. M.; Lin, Z.-Q.; Terry, N., Trace Element Removal from Coal Ash Leachate by a 10-Year-Old Constructed Wetland Z.H. Ye, present address: Institute for Natural Resource and Environmental Management, Hong Kong Baptist Univ., Hong Kong. *Journal of Environmental Quality* 2001, 30, (5), 1710-1719.
- 29.Kusin, F. M.; Jarvis, A. P.; Gandy, C. J., Hydraulic performance and iron removal in wetlands and lagoons treating ferruginous coal mine waters. *Wetlands* **2014**, *34*, (3), 555-564.
- Hubbard, C. G.; Black, S.; Coleman, M. L., Aqueous geochemistry and oxygen isotope compositions of acid mine drainage from the Río Tinto, SW Spain, highlight inconsistencies in current models. *Chemical Geology* 2009, 265, (3-4), 321-334.

- 31. Jarvis, A.; Moustafa, M.; Orme, P.; Younger, P., Effective remediation of grossly polluted acidic, and metalrich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK. *Environmental Pollution* **2006**, *143*, (2), 261-268.
- 32.Jiang, C.; Jia, L.; He, Y.; Zhang, B.; Kirumba, G.; Xie, J., Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. *Journal of Colloid and Interface Science* **2013**, *402*, 246-252.
- 33.Ballantine, D. J.; Tanner, C. C., Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review. *New Zealand Journal of Agricultural Research* **2010**, *53*, (1), 71-95.
- 34. Drizo, A.; Frost, C.; Grace, J.; Smith, K., Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. *Water Research* **1999**, *33*, (17), 3595-3602.
- 35.Stefanakis, A. I.; Tsihrintzis, V. A., Use of zeolite and bauxite as filter media treating the effluent of Vertical Flow Constructed Wetlands. *Microporous and Mesoporous Materials* **2012**, *155*, 106-116.
- 36.Wood, R.; McAtamney, C., Constructed wetlands for waste water treatment: the use of laterite in the bed medium in phosphorus and heavy metal removal. *Hydrobiologia* **1996**, *340*, (1-3), 323-331.
- 37.Stefanakis, A. I.; Tsihrintzis, V. A., Performance of pilot-scale vertical flow constructed wetlands treating simulated municipal wastewater: effect of various design parameters. *Desalination* 2009, 248, (1-3), 753-770.
- 38. Drizo, A.; Frost, C. A.; Grace, J.; Smith, K. A., Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. *Water Research* **1999**, *33*, (17), 3595-3602.
- 39.Mann, R.; Bavor, H., Phosphorus removal in constructed wetlands using gravel and industrial waste substrata. *Water Science and Technology* **1993**, *27*, (1), 107-113.
- 40.Xu, D.; Xu, J.; Wu, J.; Muhammad, A., Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. *Chemosphere* **2006**, *63*, (2), 344-352.
- 41.Barca, C.; Gérente, C.; Meyer, D.; Chazarenc, F.; Andrès, Y., Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. *Water Research* **2012**, *46*, (7), 2376-2384.
- 42.Barca, C.; Troesch, S.; Meyer, D.; Drissen, P.; Andres, Y.; Chazarenc, F., Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments. *Environmental Science & Technology* **2012**, *47*, (1), 549-556.
- 43.Claveau-Mallet, D.; Wallace, S.; Comeau, Y., Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. *Water Research* **2013**, *47*, (4), 1512-1520.
- 44.Postila, H.; Karjalainen, S. M.; Kløve, B., Can limestone, steel slag or man-made sorption materials be used to enhance phosphate-phosphorus retention in treatment wetland for peat extraction runoff with low phosphorous concentration? *Ecol. Eng.* **2017**, *98*, 403-409.
- 45.Jørgensen, C. A.; Jensen, H. S.; Egemose, S., Phosphate adsorption to iron sludge from waterworks, ochre precipitation basins and commercial ferrihydrite at ambient freshwater phosphate concentrations. *Environmental Technology* **2017**, *38*, (17), 2185-2192.
- 46.Babatunde, A.; Zhao, Y., Forms, patterns and extractability of phosphorus retained in alum sludge used as substrate in laboratory-scale constructed wetland systems. *Chem. Eng. J.* **2009**, *152*, (1), 8-13.
- 47.Zhao, Y.; Babatunde, A.; Hu, Y.; Kumar, J.; Zhao, X., Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. *Process Biochemistry* 2011, 46, (1), 278-283.
- 48.Bai, L.; Wang, C.; Huang, C.; He, L.; Pei, Y., Reuse of drinking water treatment residuals as a substrate in constructed wetlands for sewage tertiary treatment. *Ecol. Eng.* **2014**, *70*, 295-303.
- 49.Yaghi, N.; Hartikainen, H., Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings. *Chemosphere* **2013**, *93*, (9), 1879-1886.
- 50.Zhu, T.; Jenssen, P.; Maehlum, T.; Krogstad, T., Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands. *Water Science and technology* **1997**, *35*, (5), 103-108.

- 51. Arias, M.; Da Silva-Carballal, J.; García-Río, L.; Mejuto, J.; Nunez, A., Retention of phosphorus by iron and aluminum-oxides-coated quartz particles. *Journal of Colloid and Interface Science* **2006**, *295*, (1), 65-70.
- Soujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A., Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. *Journal of Hazardous Materials* 2008, 151, (1), 103-110.