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1. Simulation methods 

 

Fig. S1 | Quantum and Classical Molecular Dynamics Simulations. a, Schematic of the 
supercell for QMD simulations. Periodic boundary conditions imposed along all three directions 
are used to model a bulk 2H-phase MoTe2 crystal. b, Schematic of the photoexcitation process, 



 
 

which involves instantaneous promotion of one electron from the VBM (i.e. the HOMO state) to 
the CBM. This simulates the band-edge (BE) excitation by the 800 nm pulse. At 400 nm, electron 
is promoted to a higher-energy state to simulate photogeneration of a hot electron. TD-DFT is used 
to track the time evolution of KS energy levels after electronic excitation. These eigenlevels also 
respond to atomic motion at the characteristic frequency of lattice vibration modes. c, Schematic 
of the laterally-large bulk simulation cell used in classical molecular dynamics simulations used 
to model the influence of phonon modes on the changes of UED patterns (i.e. peak and diffuse 
intensities). d, Phonon modes are selectively excited by applying an instantaneous force on atoms 
along the eigenvector of the phonon mode. This induces normal-mode vibrations in the lattice, 
whose magnitude can be tracked by following the local mean-square displacement of atoms, 〈𝑢#〉.  
 

2. Differential UED patterns 

 
Fig. S2 | Differential Diffuse Scattering. (a), Upon 400 nm excitation and (b) Upon 800 nm 
optical excitation.  
 
 

3. Forcefield Parameterization 
 
Molecular dynamics simulations were performed with an empirical Stillinger-Weber forcefield. 
Containing 2- and 3-body interaction terms, this forcefield has been used previously in MD 
simulations and studies of thermal and elastic phenomena in transition metal dichalcogenide 
(TMDC) materials 1–3. Forcefield parameters for MoTe2 crystals were optimized using density 
functional theory calculations of structural properties like lattice constants and vibrational 
properties like the phonon dispersion curve. Forcefield parametrization was performed with the 
GULP code which uses the Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the 
objective function 4,5 

𝐹(𝑥) =*𝑤,-𝑓,/0(𝑥) − 𝑓,
23456789

#
:

,;<

 



 
 

Here, the vector 𝑥 denotes the Stillinger-Weber parameters, 𝑓,=>? is the 𝑖th observable quantity, 
such as lattice constant and vibrational frequency obtained from first-principles DFT calculations. 
𝑓,ABCA(𝑥)  is the corresponding value calculated using the Stillinger Weber forcefield with 
parameters defined by 𝑥 and 𝑤,  is an empirically chosen weight which represents the relative 
importance of the observable quantity, 𝑓,

2345678. Fig. S3 compares the phonon dispersion spectra 
produced by the MoTe2 Stillinger-Weber forcefields to those generated from DFT simulations. 
This figure demonstrates that lattice vibrations, especially those of low-energy acoustic modes are 
captured accurately in the Stillinger Weber force field. 
 

 
Fig. S3 | Goodness of SWFF for bulk MoTe2. Stillinger Weber forcefields are constructed to 
reproduce the entire phonon dispersion (a) and vibrational density of states (b) of the bulk 2H-
phase MoTe2 crystal. 
 

4. Sample rotation during photoexcitation 
 



 
 

 
Fig. S4 | Peak position drift. There is negligible drift in the position of the center of mass of 
each of the six (100) lattice peaks, indicating no significant change in the orientation of the 
MoTe2 sample due to optical excitation.  
 

5. Time constants for intensity of lattice planes and diffuse regions 
 

Optical excitation Peak τ (ps) ΔI (%) 
400 nm pump 
Fluence = 0.86 mJ/cm2 
 

100 1.458 ± 0.047 0.600 ± 1.3´10-6 
110 1.570 ± 0.008 -2.553 ± 3.3´10-6 
200 1.733 ± 0.011 -4.507 ± 1.1´10-5 
220 1.584 ± 0.003 -15.686 ± 5.2´10-5 
300 1.638 ± 0.003 -12.638 ± 3.1´10-5 
120 1.709 ± 0.004 -8.667 ± 2.0´10-5 
130 1.727 ± 0.003 -15.756 ± 4.2´10-5 

M-point 1.411 ± 0.018 3.931 ± 2.3´10-5 
K-point 1.101 ± 0.027 3.728 ± 3.6´10-5 
Λ−point 3.559 ± 0.112 5.755 ± 9.5´10-5 

800 nm pump 
Fluence = 2.54 mJ/cm2 
 

100 0.807 ± 162.4 -0.037 ± 1.5´10-5 
110 1.407 ± 0.106 -1.349 ± 2.5´10-5 
200 1.360 ± 0.098 -1.887 ± 5.9´10-5 
220 1.133 ± 0.013 -6.291 ± 1.3´10-4 
300 1.283 ± 0.012 -4.987 ± 6.2´10-5 
120 1.555 ± 0.047 -3.629 ± 9.4´10-5 



 
 

130 1.101 ± 0.024 -5.329 ± 1.7´10-4 
M-point 0.680 ± 0.034 1.980 ± 6.5´10-5 
K-point 0.745 ± 0.137 1.803 ± 9.0´10-5 
Λ−point 1.619 ± 1.293 0.934 ± 2.0´10-4 

 
Table S1 | Measured dynamics of peak and diffuse intensities in UED experiments 
 
 

6. Debye-Waller Model 
Quantitatively, variations in the lattice plane intensity, 𝐼(𝑞), can be explained due to variations in 
the Debye-Waller parameter, 𝑊 , which depends upon the lattice disorder through the RMS 
displacements of atoms in the crystal, 〈𝑢#〉, through the Equations 1(a) and 1(b). 

 
𝐼G = 𝐼H × 	𝑊     Eqn. 1(a) 
 
𝑊 = exp(−𝑞#〈𝑢#〉)    Eqn. 1(b) 

 
Figures 2d and 2g show a semilog plot of measured normalized peak intensities of different {hkl} 
planes as a function of the reciprocal vector, 𝒒. The linear dependence of log 𝐼(𝑞) on 𝑞# indicates 
that lattice disordering/thermalization explains the variation of all lattice peak intensities.  
 

7. Electronic Band Structure of Bulk 2H-phase MoTe2 
 

 
Fig. S5 | Electronic structure of bulk MoTe2. Valence and conduction band edges of bulk MoTe2 
showing the indirect band gap between the highest occupied state at the Γ point in the valence band 
and the lowest unoccupied Λ point state in the conduction band. 
 

8. Sample preparation and characterization 



 
 

 
Fig. S6 | Experimental sample characterization. a, Raman spectra of MoTe2 film shows several 
modes at E2g1 (~231 cm-1), A1g (~171 cm-1) and B2g1 (~286 cm-1). b, (002), (004), (006) and (008) 
planes are detected in the XRD patterns. XPS spectra of (c) Mo 3d and (d) Te 3d. The main peaks 
are observed at 231.2 eV (Mo 3d3/2), 228.0 eV (Mo 3d5/2) and 583.3 eV (Te 3d3/2), 572.9 eV (Te 
3d5/2). (e), AFM measurement is conducted near the edge. (f), The depth profile shows the film 
has a thickness of ~10 nm. (g) TEM image and (h) corresponding Fast Fourier transform (FFT) 
image confirm the MoTe2 film has a hexagonal crystal structure. 
 
 

9. Temperature increase in UED experiments and efficiency of electron-phonon 
coupling at different excitation energies 

 
Stronger electron-phonon coupling at higher excitation energies is also supported by the measured 
increase in sample temperature during optical excitation by 400 nm and 800 nm pulses. The 
stronger Debye-Waller response due to 400 nm excitation is consistent with the complete 
conversion of absorbed optical energy into lattice motion, while the relatively weaker Debye-
Waller response due to 800 nm excitation indicates that only intraband relaxation (i.e. relaxation 
of carriers to the conduction band edge) couples to lattice motion. 
 
Experimental sample 
MoTe2 bulk, band gap, 𝐸S = 	1.1	eV 
Sample thickness, t = 9	(±1)	nm = 	0.009	µm  
Sample density is 7.7 g/cm3 and molar mass of MoTe2 is 351.14 g/mol. 
Specific heat, C_(300	K) = 18.38 cde
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Predicted Temperature Jump at 400 nm Excitation at Pump Fluence of 0.86 mJ/cm2. 
Photon energy  hν = 3.1	eV 
Beam diameter of the optical pulse = 910	µm (i.e. 2ω)) 
Pumped volume = πω#t = 5.854	 × 105r	cmt 



 
 

Total energy in pump, Qvwfv = 1.33	µJ  
 
Absorption efficiency, ηdz{ = 0.43, including the absorption cross section and on the substrate 
and saturable absorber effect. 
Total absorbed energy, Q|} = Qvwfv × ηdz{ = 0.57	µJ	 
 
Estimated Δ𝑇 for complete conversion of absorbed energy into thermal energy: 

ΔT = 	
0.57	µJ

5.85 × 105r 	× 	7.7	 × 	0.2189 = 𝟓𝟖	𝐊 
 
This suggests that full absorbed photon energy will lead to ~60 K temperature of the MoTe2 at 
current pump energy. 
 
 
Temperature Jump Calculation from UED Experimental Results at 400 nm Excitation. 
  
The temperature jump in experimental samples can be estimated from the measured change in 
mean square displacement of atoms using the following Debye-Waller expressions.  
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where ∆〈𝑢#〉∆8 , ℏ, m, kB, and 𝜃6  are means-square displacement, reduced Planck’s constant, 
reduced mass, Boltzmann constant and Debye Temperature, respectively. The Debye temperature 
of bulk 2H-phase MoTe2 is 165 K (corresponding to the 3.5 THz maximum frequency of the 
acoustic bands in bulk 2H-MoTe2). Figs. S7 shows a fitting to obtain mean-square displacement 
from UED measurement (i.e. slope). According to the Eqs. 2b and 2c, we obtained ~70 K 
temperature jump of lattice temperature at 400 nm excitation. This suggests complete conversion 
of absorbed optical energy (i.e. 58 K vs. 70 K). 



 
 

 
Fig. S7 | Temperature measurement in UED experiments. The atomic mean square 
displacement obtained from fitting UED intensities to Debye-Waller expression provides an 
estimated temperature jump of ~70 K. 
 
Predicted Temperature Jump at 800 nm Excitation at Pump fluence of 2.5 mJ/cm2 
Photon energy hν = 1.55	eV 
Beam diameter of the optical pulse is 510	µm (i.e. 2ω) 
Pumped volume = πω#t = 1.8385	 × 105r	cmt 
 
Total energy in pump, Qvwfv = 2.59	µJ 
Absorption efficiency, ηdz{ = 0.175, based on the substrate and saturable absorber effect 
Reflection efficiency of the mirror, η� ¡e = 0.64 
Total absorbed energy, Q|} = Qvwfv × ηdz{ × η� ¡e = 0.29	µJ	 
 
Estimated Δ𝑇 for complete conversion of absorbed energy into thermal energy: 

ΔT = 	
0.29	µJ

1.8385 × 105r 	× 	7.7	 × 	0.2189 = 93.6	K 
 
Estimated Δ𝑇 for conversion of above-band-gap energy into thermal energy: 

ΔT = 	
0.29	µJ	 × (1.55 − 1.1)	eV

1.8385 × 105r 	× 	7.7	 × 	0.2189 × 1.55	eV = 27.17	K 
 
Temperature Jump Calculation from UED Experimental Results at 800 nm Excitation. 
Using the same calculation procedure as shown above for 400 nm, we are able to obtain 
temperature jumps in MoTe2 crystals pumped by a 800 nm optical pulse at three different fluence 
values, 1.4 mJ/cm2, 2.5 mJ/cm2 and 3.2 mJ/cm2 corresponding to the resulting carrier density of 
3.5×1020, 6.3×1020 and 8.1×1020 cm-3, respectively. For all three carrier densities, the measured 
temperature rise from UED (Figures S8(a) and S8(b)) are only ~30% of the expected temperature 
rise due to complete conversion of optical energy into lattice thermal disorder. This ratio is 
consistent with the fraction of optical energy above the 1.1 eV band gap, (i.e. <.¢¢5<.<

<.¢¢
≈ 30%), 



 
 

suggesting that only intraband relaxation of excited electrons to the conduction band edge occurs 
on the timescale of our UED experiments for 800 nm excitation. 

  
Fig. S8 | Temperature measurement for 800 nm excitation. (a) The atomic mean square 
displacements obtained from fitting UED intensities to Debye-Waller expression for three pump 
fluence values results in temperature jumps significantly lower than values predicted for 
complete conversion of optical energy to thermal energy (b). 
 
 
 

 
Fig. S9 | Calculated intensity of {100} and {110} peaks from classical MD simulation. The 
200-fs instrument response time in UED experiments prohibits the observation of high-frequency 
coherent oscillations. Classical MD simulations are performed at time steps of 2 fs and can be 
used to resolve coherent lattice motion that accompanies the 𝐸#S< , A1g, and LA(M) phonon modes.  
 
 

10. Fourier transform analysis of Kohn-Sham eigen levels for identification of vibrational 
frequencies 

 
Fourier transforms shown in Figure 4 are performed for the 10 highest-occupied Kohn-Sham 
eigenlevels lying ~0.75 eV below the valence band maximum. For both the 1.3 eV and 2.8 eV 
excitations, Fourier analysis is performed in the time-window beginning from the initial non-
adiabatic transition of the excited electron (~0.6 ps for the 1.3 eV excited electron and ~0.25 ps 
for the 2.8 eV excited electron) till the end of the simulation (2 ps). 
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