Supporting Information

Role of Water in Suppressing Recombination Pathways in CH₃NH₃PbI₃ Perovskite Solar Cells

Ankur Solanki 1^{\dagger} , Swee Sien Lim $1,2^{\dagger}$, Subodh Mhaisalkar3,4 and Tze Chien Sum1,*

¹Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

²Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553, Singapore

³Energy Research Institute @NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore

⁴School of Materials Science and Engineering Nanyang Technological University Nanyang Avenue, Singapore 639798, Singapore

[†]These authors have equal contribution to this work. ^{*}Corresponding author. Tze Chien Sum: <u>Tzechien@ntu.edu.sg</u>

Results

X-ray Diffraction pattern

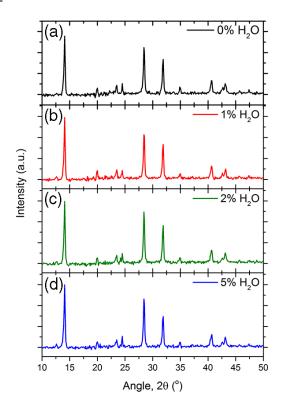
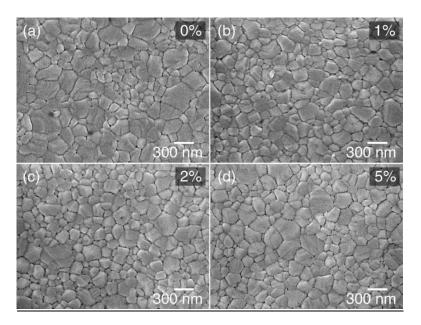
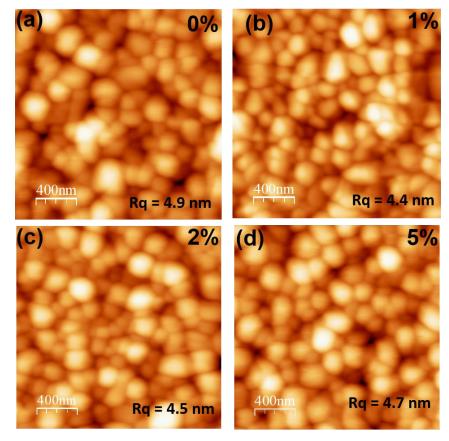
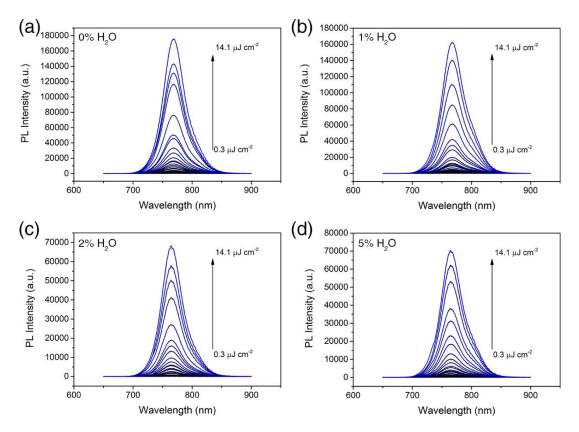
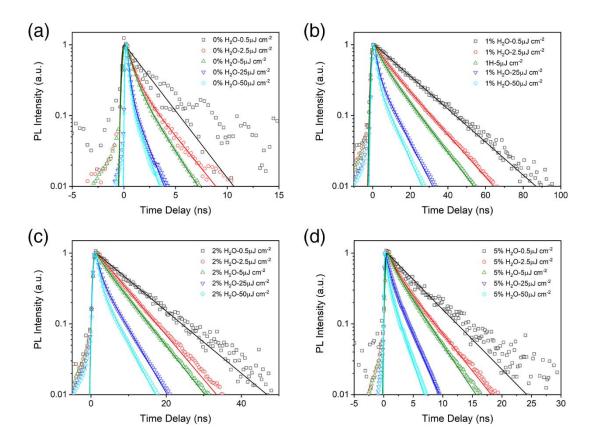
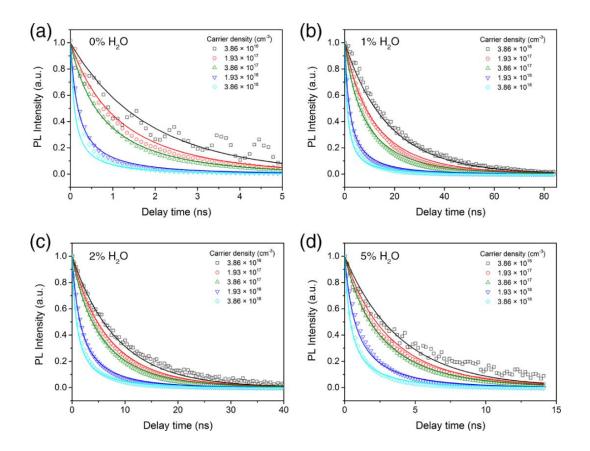




Figure S1. X-ray diffraction spectra of the different samples with varying H₂O additive concentrations: (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O.


Scanning electron microscopy images


Figure S2.SEM images of perovskite films prepared from solutions with varying water additive concentration (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O; 1% indicates perovskite solution with 1 vol% H₂O additive.


Figure S3: AFM images $(2 \ \mu m \times 2 \ \mu m)$ of perovskite films prepared from solutions with varying water additive concentration with root-mean-square roughnesses of the various samples: (a) Rq_{0%} = 4.9 nm, (b) Rq_{1%} = 4.4 nm, (c) Rq_{2%} = 4.5 nm and (d) Rq_{5%} = 4.7 nm for the varying vol% H₂O-added perovskite films.

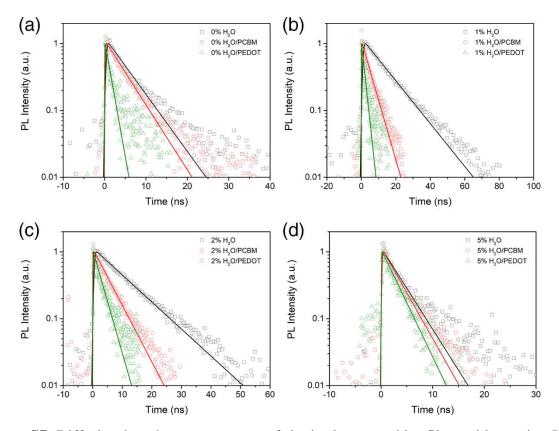

Figure S4. Power-dependent photoluminescence (PL) measured in the low fluence regime to extract trap densities in the perovskite films with varying H₂O additive concentrations: (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O.

Figure S5. Power dependent time-resolved PL (TRPL) traces fitted with mono- or biexponential decay functions to extract the PL lifetimes and their associated amplitudes in the perovskite films with varying H₂O additive concentrations: (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O.

Figure S6. Power dependent TRPL traces fitted with the recombination rate equation (see main text) to extract the monomolecular and bimolecular recombination rate constants in the perovskite films with varying H₂O additive concentrations: (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O.

Figure S7. Diffusion length measurements of the in the perovskite films with varying H₂O additive concentrations: (a) 0%, (b) 1%, (c) 2% and (d) 5 vol% H₂O with the respective quencher (black: neat film, red: PCBM layer, green: PEDOT layer) measured at a fluence of $0.5 \,\mu J \, \text{cm}^{-2}$. Symbols are the data obtained from PL measurements, solid lines are exponential fits.

Trap density calculation: Initial photogenerated carrier density in different perovskite films were estimated using Plank Equation ($\alpha E = \frac{nhc}{\lambda}$) (Equation S1), where α is the absorption coefficient at 600 (= λ) nm while *E*, *n*, *h*, *c* are excitation pump fluence, charge carrier density, plank constant and light velocity, respectively. α is calculated using equation $\alpha = I/L$ (Equation S2) where *I* is the absolute absorption intensity at 600 nm and *L* represents the film thickness (~ 275 nm). In order to estimate the defects density, the integrated steady state PL intensity for the different perovskite films was fitted with the model:

$$n_c(0) = \sum n_{TP}(0)(1 - e^{-k_1 I_{PL}}) + k_2 I_{PL}$$
 Equation S3

where $n_c(0)$ and n_{TP} represent photogenerated charge carrier density and trap density, respectively while k_1 , k_2 are the constants.

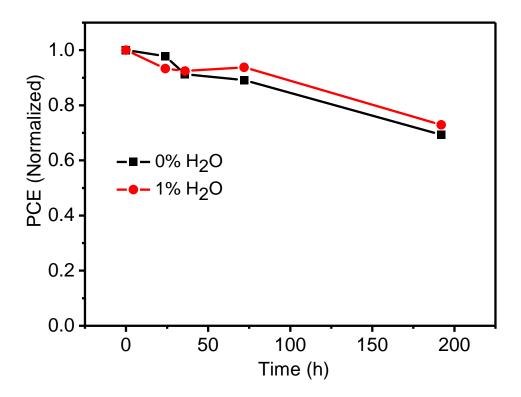


Figure S8: Comparative study of device degradation of 0% and 1% H₂O added solar cell devices.