Supporting information

Multiwalled carbon nanotubes - poly(3-octylthiophene-2,5-diyl) nanocomposite transducer for ion-selective electrodes. Raman spectroscopy insight into the transducer / membrane interface

Dawid Kałuża, Ewa Jaworska, Maciej Mazur, Krzysztof Maksymiuk, Agata Michalska* Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Corresponding author's email address: agatam@chem.uw.edu.pl

Figure S1. Raman spectra (λ_{exc} =632.8 nm) of MWCNT (red curve); POT (black curve) and MWCNT dispersed with POT – composite material (blue curve).

Figure S2. Contact angle measurements of A) GC electrode modified with POT layer; B) - GC electrode modified with POT-MWCNTs layer.

Table S1.

	MWCNT s-POT This work	CW ¹	CF-G ¹	PEDOT ¹	PANI ¹	POT ¹	GRAPHENE ²	CB ³	MWCNT s(CMC) ⁴	[TbuPPC o- (II)]/[Tbu PCCo(III) (PPh3)]
										with MWCNT s ⁵
Mg ²⁺	-3.7 ± 0.4	-3.5 ± 0.3	-3.7 ± 0.3	-3.6±0.2	-3.6 ± 0.3	-3.4 ± 0.4	-4.5±0.3	-5.5 ± 0.2	-4.0 ± 0.2	-3.7 ± 0.4
Ca ²⁺	-3.6 ± 0.4	-3.5 ± 0.3	-3.7 ± 0.3	-3.5±0.3	-3.6±0.3	-3.4 ± 0.4	-3.6±0.2	-5.4 ± 0.2	-3.9 ± 0.6	-3.2 ± 0.3
H^+	-4.6 ± 0.3	-4.5±0.2	-4.6±0.1	-4.2±0.3	-4.6±0.3	-4.5 ± 0.3	-	-	-	-4.3±0.4
Na ⁺	-3.5 ± 0.1	-3.4±0.2	-3.5 ± 0.2	-3.1±0.2	-3.5 ± 0.1	-3.1±0.1	-4.5±0.3	-3.5 ± 0.2	-3.4 ± 0.1	-3.7 ± 0.1
slope±SD	56.3±0.4	61.2±0.7	60.0±1.8	55.2±1.7	59.2±1.2	59.8±0.5	59.2±0.1	59.1±0.2	57.3±0.6	55.7±0.7
(mV/dec)										
linear range	10 ⁻¹ -10 ⁻⁶	10 ⁻¹ -10 ⁻⁶	10 ⁻¹ -10 ⁻⁷	10 ⁻¹ -10 ⁻⁶	10 ⁻¹ -10 ⁻⁶	10 ⁻¹ -10 ⁻⁷	10 ⁻¹ -10 ^{-4.5}	-	10-1-10-6	10 ⁻¹ -10 ⁻⁷
detection limit	10-6.8	10-6.5	10-7.1	10-6.3	10-6.6	10-6.8	10-5	10-6.4	10-6.4	10-6.9
[M]										
resistance [Ω]	105	8.8x10 ⁶	3.0x10 ⁶	1.8x10 ⁶	1.1x10 ⁶	2.5x10 ⁶	-	1.2×10^{6}	1x10 ⁶	6.2x10 ⁶
capacitance [F]	2x10-4	2x10-6	3x10 ⁻⁵	9x10 ⁻⁵	2x10 ⁻⁵	1x10-4	-	5.1x10 ⁻⁵	-	1.5x10 ⁻⁵

Comparison of electrochemical and analytical parameters offered by different by all-solid-state sensors of different arrangements.

MWCNTs-POT - multiwalled carbon nanotubes- poly(octylthiophene) nanocomposite, **CW** - coated wire, **CF-G** - carboxy-functionalized graphene, **PEDOT** - poly(3,4-ethylenodioxythiophene), **POT** - regioregular poly(octylthiophene), **CB** - carbon black, **MWCNTs(CMC)** - multi-walled carbon nanotubes dispersion in sodium carboxymethylcellulose, **[TbuPPCo(II)]/[TbuPCCo(III)(PPh3)]** with **MWCNTs** - 5,10,15,20-tetrakis(4-tert-butylphenyl)porphyrin and 5,10,15-tris(4-tert-butylphenyl)corrole Co complexes with multi-walled carbon nanotubes

Figure S3. Results of chronopotentiometric experiments performed for glassy carbon substrate electrode covered with (red line) POT or (black line) POT-MWCNTs layer recorded in 10^{-3} M KCl, applying cathodic / anodic current of 10 nA. The experimental curves were shifted to give the same value at the moment of polarization change. Inset – magnified trace for POT-MWCNTs composite scale bar is 5 mV.

Figure S4. Cyclic voltammograms recorded for (red line) POT or (blue line) POT-MWCNTs layer coated on glassy carbon supporting electrode in 10⁻³ M KCl, scan rate 50 mV/s.

Figure S5. EIS spectra of (**•**) POT and (**•**) POT-MWCNTs layer recorded in 10^{-3} M KCl solution, in the frequency range from 0.01 to 10^{5} Hz, using an amplitude of 50 mV at a potential of 0.5V.

Figure S6. Potentiometric response of potassium-selective electrodes with POT-MWCNTs composite transducer recorded in KCl solutions mean potential values \pm SD recorded over 6 calibrations performed during one week.

Figure S7. Results of water layer test experiment performed for all-solid-state sensor with POT-MWCNTs transducer recorded in 10⁻³ M KCl solution, 10⁻³ M NaCl and again in 10⁻³ M KCl solution.

A)

Figure S8. A) EIS spectrum recorded for all-solid-state potassium selective electrode with POT-MWCNTs transducer recorded in 0.1 M KCl solution, in the frequency range from 0.01 to 10⁵ Hz, using an amplitude of 50 mV at a potential of 0.5V. B) Chronopotentiometric experiments results performed for all-solid-state potassium selective electrode with POT-MWCNTs transducer recorded in 0.1 M KCl solution using current 1 10⁻⁸ A.

References

(1) Jaworska, E.; Lewandowski, W.; Mieczkowski, J.; Maksymiuk, K.; Michalska, A. Critical Assessment of Graphene as Ion-to-Electron Transducer for All-Solid-State Potentiometric Sensors. *Talanta* **2012**, *97*, 414–419.

(2) Li, F.; Ye, J.; Zhou, M.;Gan, S.; Zhang, Q.; Han, D.; Niu, L. All-Solid-State Potassium-Selective Electrode Using Graphene as the Solid Contact. *Analyst* **2012**, *137*, 618–623

(3) Paczosa-Bator, B. All-Solid-State Selective Electrodes Using Carbon Black. *Talanta* **2012**, *93*, 424–427

(4) Jaworska, E.; Maksymiuk, K.; Michalska, A. Optimizing Carbon Nanotubes Dispersing Agents from the Point of View of Ion-selective Membrane Based Sensors Performance – Introducing Carboxymethylcellulose as Dispersing Agent for Carbon Nanotubes Based Solid Contacts. *Electroanalysis* **2016**, *28*, 947–953.

(5) Jaworska, E.; Naitana, M. L.; Stelmach, E.; Pomarico, G.; Wojciechowski, M.; Bulska, E.; Maksymiuk, K.; Paolesse, R.; Michalska, A. Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. *Anal. Chem.* **2017**, *89*, 7107–7114