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Computational Details

In order to validate the methodology, three different molecular dynamics simulations of different
systems were prepared – see Table 1.

For the bulk phase system (uracil in water), one molecule Uracil and 32 molecules Water were
placed inside a cubic simulation cell with the Packmol software.1 After 1 ns of pre-equilibration
using the LAMMPS program package2 in the NpT ensemble, using the OPLS–AA force field3

for Uracil and the TIP4P–EW force field for water,4 a density of 0.999 g cm−1 resulted. An ab
initio molecular dynamics simulation was set up from the final structure. For the two gas phase
systems, the steps described above were skipped.

Table 1: Simulated system details.
System Ingredients Cell Vector (pm) Density (g cm−1)

Uracil (Water) 1 Uracil
32 Water 1045.8 0.999

Uracil (Vacuum) 1 Uracil 1000.0 0.186
o-Nitrophenol (Vacuum) 1 o-Nitrophenol 1000.0 0.231

For the BOMD simulations, we used the program package CP2k,5 employing the Quickstep
method6 and orbital transformation7 / DIIS for fast convergence. The electronic structure was
calculated with density functional theory,8,9 utilizing the BLYP functional10,11 together with the
recent reparametrization12 of Grimme’s D3 dispersion correction13 with Becke–Johnson damping.
Basis sets of the kind MOLOPT-DZVP-SR-GTH14 and GTH pseudopotentials15,16 were applied
to all atoms. The plane wave cutoff was set to 280Ry, and an SCF convergence criterion of 10−6

was used. The time step was chosen to be 0.5 fs in all simulations. The simulation temperature was
adjusted to 300K by a Nosé–Hoover thermostat chain17–19 (i. e., NVT ensemble). After two more
equilibration intervals (1 ps with massive thermostating and thermostat time constant τ = 10 fs,
then 30 ps with global thermostating and thermostat time constant τ = 100 fs), a production run
with the thermostat settings of the latter equilibration interval was performed for 20.0 ps (i. e.,
40 000 time steps).

From the BOMD production trajectories, snapshots were taken every 2.5 fs (i. e., every 5 steps),
so that 8 000 snapshots per system resulted. For each of these snapshots, a real-time propagation
run (RTP) was started with CP2k. The initial wave function for the propagation was optimized
under the influence of an external periodic electric field in X, Y, and Z direction. For each field
direction, a separate RTP run was performed. The absolute value of the electric field amounted to
|E| = 5.0·10−4 a.u. = 2.57·108Vm−1. Directly in the beginning of the RTP runs, the electric field
was switched off (step response). The propagation time step was set to 0.0125 fs, and 1 280 steps
were performed (i. e., 16 fs of total physical time). In the RTP runs, we chose EPS_DEFAULT
to 10−10 and EPS_ITER to 10−6. Every 0.0625 fs (i. e., every 5 propagation steps), the total
electron density was written to disk in Gaussian CUBE file format, so that 256 frames per BOMD
snapshot resulted. The spatial resolution of the volumetric grid was 108× 108× 108 for all three
systems. The CUBE files were compressed to BQB format20 directly after each RTP run. The
computational cost was 1 350 core hours for the BOMD production run, 230 000 core hours for the
RTP runs, and 430 core hours for compressing the electron density and performing the Voronoi
integration.
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In each of the volumetric frames, molecular electric dipole moments µ were computed by
integrating over the electron density ρ (r), using our Voronoi integration technique21 with van-
der-Waals atom radii for the radical Voronoi tessellation:

µ =

NMol∑
n=1

qnrn −
∫

Mol

ρ (r) r d3r, (1)

where qn denotes the nuclear charge of atom n, and NMol the number of atoms within the
selected molecule. From the molecular dipole time series, the dynamic polarizability tensors were
computed according to Equation 1 in the main manuscript. A value of c = 7.0 for the constant
in the Gaussian window function was applied. In the Fourier transform to obtain the Raman
invariants (Equations 2 and 3 in the main manuscript), an autocorrelation depth of 5.12 ps and
a Hann window function (cos2) were applied.

Complex Autocorrelation

Following from the definition of autocorrelation
〈
f (τ) · f (τ + t)

〉
τ
=
∫
f (τ + t) · f (τ)dτ ,

the autocorrelation of a complex time series f (t) can be computed from autocorrelations and
cross-correlations of real time series in the following way:〈

f (t) · f (t+ τ)
〉
τ
=
〈
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(
f (t)

)
· Re
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f (t+ τ)

)〉
τ
+
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Im
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)
· Im
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τ

+ i

[〈
Re
(
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)
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] (2)
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Dynamic Polarizability

Figure S1: Real part (upper panel) and imaginary part (lower panel) of the computed isotropic
dynamic polarizability of the uracil molecule in four different snapshots of the uracil
in water simulation.
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Full Range Spectra

Figure S2: AIMD-based non-resonant Raman spectrum of ortho-nitrophenol in gas phase (at
1.17 eV / 1060 nm).

Figure S3: AIMD-based resonance Raman spectrum of ortho-nitrophenol in gas phase (at 2.80 eV
/ 443 nm).
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Figure S4: AIMD-based non-resonant Raman spectra of uracil in gas phase (green curve) and
aqueous solution (black curve) at 1.17 eV / 1060 nm.

Figure S5: AIMD-based resonance Raman spectra of uracil in gas phase (green curve) and aqueous
solution (black curve) at 3.65 eV / 340 nm.
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ortho-Nitrophenol

As a second model system, we simulated ortho-nitrophenol in gas phase, as it has been in-
vestigated by previous computational studies22,23 on the resonance Raman effect which were
not based on molecular dynamics simulations. We compare both the non-resonant as well as
the resonant Raman spectra from our approach with the results from a static calculation23 in
the upper panel of Figure S6. As expected, there are some differences because the AIMD-based
spectra take into account some anharmonic effects which are completely missing in the static
spectra. This leads both to shifts in band positions and to line broadening which alters the peak
heights. Apart from these effects, we find that the change in relative band intensities and the
total increase in intensity due to the resonance Raman effect is captured by our approach very well.

As explained above, our method does not require a set of laser energies as input, but yields the
resonance Raman spectra for all possible laser energies in one pass. In the lower panel of Figure
S6, we present the set of all such spectra, with the laser energy on the ordinate axis, and the
vibrational frequency shown on the abscissa. Each spectrum (i. e., each row of the plot) has been
normalized to uniform maximum band height, because otherwise the non-resonant spectra would
not be visible at all due to the strong increase in intensity caused by the resonance Raman effect.
It is clearly visible how bands which are almost invisible in the non-resonant Raman spectrum
become very intense at certain laser energies (e. g., the bands at 850, 1050, and 1600 cm−1). Such
an increase in intensity only happens if the spectral band involves movement of atoms which take
part in the electronic excitation at a given laser energy.
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Figure S6: Upper panel: AIMD-based resonance Raman spectrum of o-nitrophenol (black curve)
compared to results from static calculation23 (red bars) for two different laser energies;
Lower panel: AIMD-based resonance Raman spectra of o-nitrophenol over a wide
range of laser energies (normalized).

8



References

(1) Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A Package for
Building Initial Configurations for Molecular Dynamics Simulations. J. Comp. Chem. 2009,
30, 2157–2164.

(2) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys
1995, 117, 1–19.

(3) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and
Reparametrization of the OPLS-AA Force Field for Proteins Via Comparison with Accurate
Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474–6487.

(4) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.;
Head-Gordon, T. Development of an Improved Four-Site Water Model for Biomolecular
Simulations: TIP4P-EW. J. Chem. Phys. 2004, 120, 9665–9678.

(5) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; Vandevondele, J. CP2k: Atomistic Simulations of
Condensed Matter Systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15–25.

(6) Vandevondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quick-
step: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane
Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128.

(7) Vandevondele, J.; Hutter, J. An Efficient Orbital Transformation Method for Electronic
Structure Calculations. J. Chem. Phys. 2003, 118, 4365–4369.

(8) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864.

(9) Kohn, W.; Sham, L. Self-Consistent Equations Including Exchange and Correlation Effect.
Phys. Rev. 1965, 140, 1133.

(10) Becke, A. Density-Functional Exchange-Energy Approximation with Correct Asymptotic
Behavior. Phys. Rev. A 1988, 38, 3098–3100.

(11) Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti Correlation Energy Formula
into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.

(12) Smith, D. G. A.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. Revised Damping Parameters
for the D3 Dispersion Correction to Density Functional Theory. J. Phys. Chem. Lett. 2016,
7, 2197–2203.

(13) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A Consistent and Accurate Ab Initio
Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements
H-Pu. J. Chem. Phys. 2010, 132, 154104.

(14) Vandevondele, J.; Hutter, J. Gaussian Basis Sets for Accurate Calculations on Molecular
Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127, 114105.

(15) Goedecker, S.; Teter, M.; Hutter, J. Separable Dual-Space Gaussian Pseudopotentials. Phys.
Rev. B 1996, 54, 1703–1710.

(16) Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic Separable Dual-Space Gaussian Pseu-
dopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.

9



(17) Nose, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods.
J. Chem. Phys. 1984, 81, 511–519.

(18) Nose, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol.
Phys. 1984, 52, 255–268.

(19) Martyna, G.; Klein, M.; Tuckerman, M. Nosé–Hoover Chains: The Canonical Ensemble via
Continuous Dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

(20) Brehm, M.; Thomas, M. An Efficient Lossless Compression Algorithm for Trajectories of
Atom Positions and Volumetric Data. J. Chem. Inf. Model. 2018, 58, 2092–2107.

(21) Thomas, M.; Brehm, M.; Kirchner, B. Voronoi Dipole Moments for the Simulation of Bulk
Phase Vibrational Spectra. Phys. Chem. Chem. Phys. 2015, 17, 3207–3213.

(22) Guthmuller, J. Assessment of TD-DFT and CC2 Methods for the Calculation of Reso-
nance Raman Intensities: Application to o-Nitrophenol. J. Chem. Theor. Comput. 2011, 7,
1082–1089.

(23) Thomas, M.; Latorre, F.; Marquetand, P. Resonance Raman Spectra of ortho-Nitrophenol
Calculated by Real-Time Time-Dependent Density Functional Theory. J. Chem. Phys. 2013,
138, 044101.

10


