- Supporting Information -

Selective Hydrogen Evolution on Manganese Oxide Coated Electrodes: New Cathodes for Sodium Chlorate Production

Balázs Endrődi^{a,b,*}, Aleksandra Stojanovic^a, Maria Cuartero^c, Nina Simic^d, Mats Wildlock^d, Roland de Marco^{e,f}, Gaston A. Crespo^c and Ann Cornell^{a,*}

^aApplied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 42, SE 100-44 Stockholm, Sweden

^bDepartment of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. square 1., H-6720 Szeged, Hungary

^cDepartment of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden

^dNouryon Pulp and Performance Chemicals AB, Färjevägen 1, SE 445-80 Bohus, Sweden

^eFaculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Dows Drive 90, Sippy Downs, Queensland 4556, Australia.

^fSchool of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Rd 68, Brisbane, Queensland 4072, Australia.

*Corresponding authors:	Balázs Endrődi (endrodib@chem.u-szeged.hu) &
	Ann Cornell (amco@kth.se)
Number of pages: 8	
Number of Figures: 8	
Number of Table(s): 1	

MnO_x/Ti electrode formation by the thermal decomposition of Mn(NO₃)₂ precursor

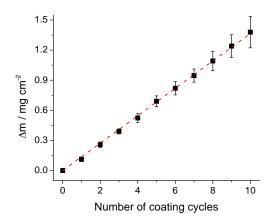
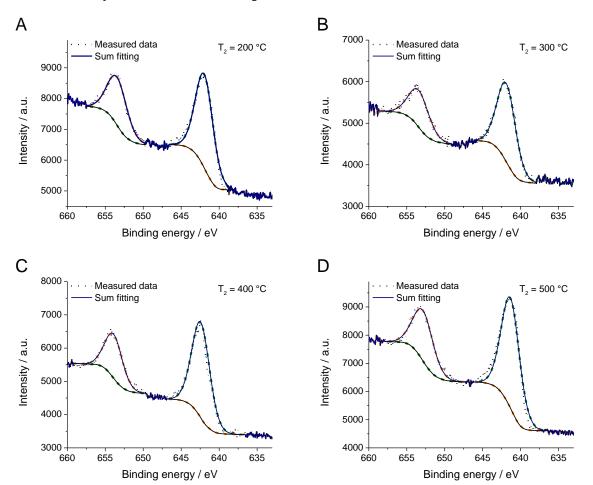
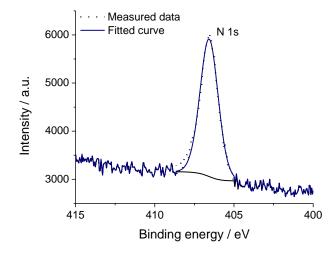



Figure S1. The cumulative weight increase during the subsequent layer coating cycles (brushcoating $V \approx 50 \ \mu l \ Mn(NO_3)_2$ precursor, drying at $T_1 = 60 \ ^\circ C$ for $t_1 = 10$ min, annealing at $T_2 = 400 \ ^\circ C$ for $t_2 = 10$ min).



SR-XPS study of the electrode composition

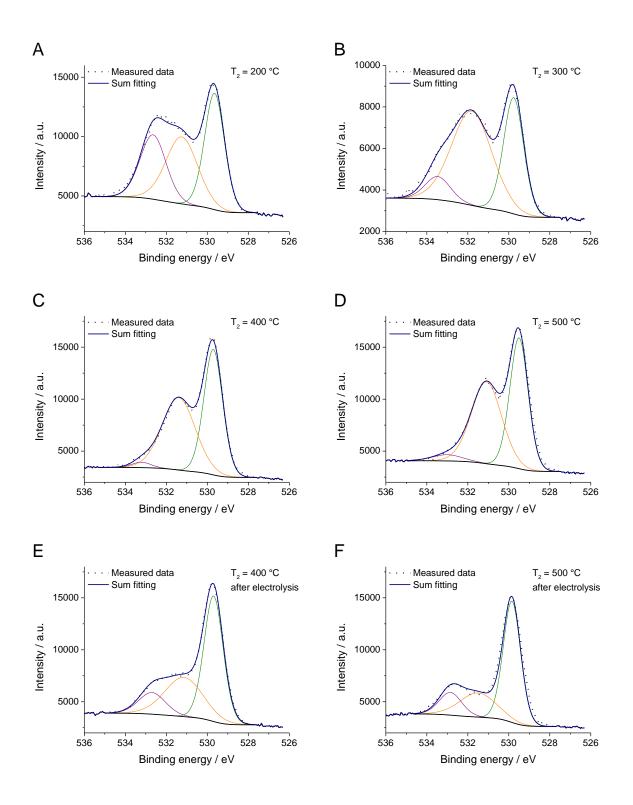

Figure S2. SR-XPS Mn 2p spectra for the MnO_x/Ti electrodes formed at different annealing temperatures (1.5 mg cm⁻² MnO_x loading): (A) 200 °C, (B) 300 °C, (C) 400 °C and (D) 500 °C.

Table S1. O-to-Mn atomic ratios in the MnO_x samples formed at different annealing temperatures (1.5 mg cm⁻² MnO_x loading), as determined from the SR-XPS measurements, as illustrated in **Figure S2**.

Annealing Temperature	Electrochemical Polarization	O-to-Mn ratio
200 °C	No	1.98
300 °C	No	1.76
400 °C	No	1.78
500 °C	No	1.76
400 °C	Yes	2.00
500 °C	Yes	2.15



Figure S3. SR-XPS spectrum of a MnO_x -200-1.5 electrode, shown for the N 1s binding energy region.

Figure S4. SR-XPS O 1s spectra of the MnO_x/Ti electrodes formed at different annealing temperature (1.5 mg cm⁻² MnO_x loading): (A) 200 °C, (B) 300 °C, (C) 400°C, (D) 500 °C, (E) 400°C after subjecting to electrochemical polarization, and (F) 500 °C after subjecting to electrochemical polarization, and (F) 500 °C after subjecting to electrochemical polarization.

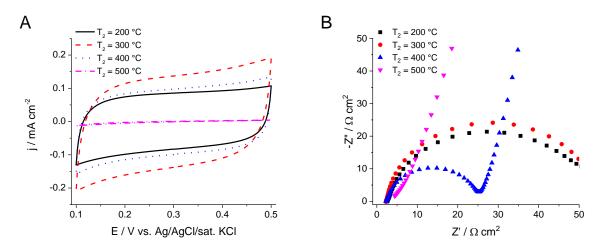

Morphology of the MnO_x/Ti electrodes formed at different annealing temperatures

Figure S5. SEM images taken of the MnO_x/Ti electrodes formed at different annealing temperatures (A) $T_2 = 200 \text{ °C}$, (B) $T_2 = 300 \text{ °C}$ (C), $T_2 = 400 \text{ °C}$ and (D) $T_2 = 500 \text{ °C}$, with the same catalyst loading (~1.5 mg cm⁻²).

Electrochemical characterization of the formed MnO_x/Ti electrodes

The relative electrochemically active surface area of the formed MnO_x layers was addressed by cyclic voltammetric measurements, in a potential window where no Faradaic reactions occur (**Figure S6**A), while the resistance of the layers was studied by electrochemical impedance spectroscopy (**Figure S6**B) performed at an electrode potential (E = +300 mV) in this range.

Figure S6. (A) Cyclic voltammograms ($v = 10 \text{ mV s}^{-1}$) of MnO_x/Ti electrodes with 1.5 mg cm⁻² MnO_x amount, prepared by applying different annealing temperatures. (B) EIS spectra of the same layers as in (A), recorded at E = +300 mV. Both set of experiments were performed in argon purged 2 M NaCl solution.

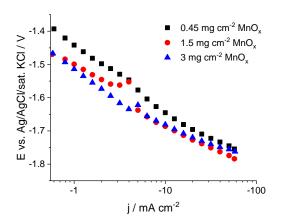
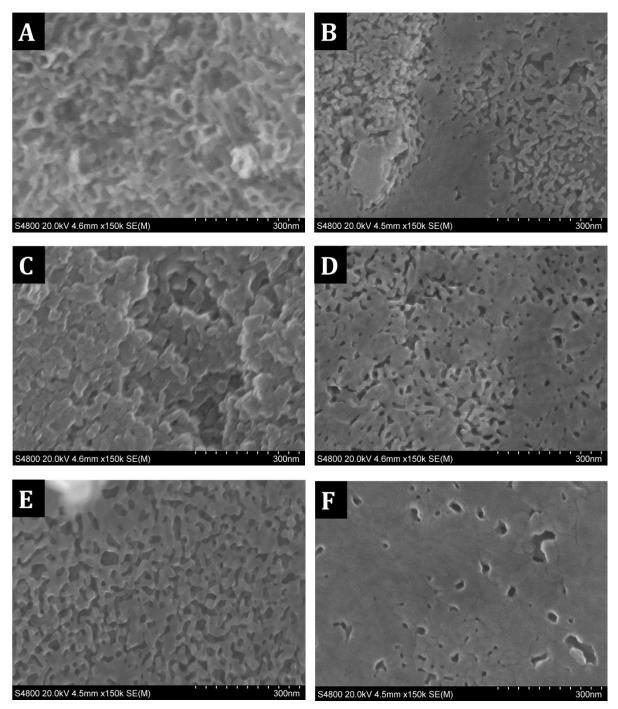



Figure S7. IR-corrected polarization curves with MnO_x/Ti electrodes prepared at T = 500 °C annealing temperatures with different MnO_x amounts. The measurements were performed in N₂ purged 2 M NaCl solution.

Effect of catalyst loading on the morphology of the MnO_x/Ti electrodes formed at 500 °C annealing temperature.

Figure S8. SEM images of MnO_x/Ti electrodes formed at $T_2 = 500$ °C annealing temperature, with increasing MnO_x loading from (A) to (F) (0.15, 0.45, 0.75, 1.5, 2.25 and 3.0 mg cm⁻², accordingly).