Supporting Information for

The CUAGAU Set of Coupled-Cluster Reference Data for Small Copper, Silver and Gold Compounds, and Assessment of DFT Methods

Bun Chan

Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan

Additional Information

Reference bond lengths and deviations	S2
CM1 energies and their components	S3-S4
Performance of DFT with the def2-TZVP basis set	S5
Assessment of additional DFT methods	S6

species	ref	DSD- PBEP86 (full)	DSD- PBEP86 (full)	DSD- PBEP86 (FC)	DSD- PBEP86 (FC)	MN15	MN15	MN15	MN15	MN15 -L	MN15 -L	MN15 -L	MN15 -L
		WCVQZ	WCVTZ	VQZ	VTZ	WCVQZ	WCVTZ	VQZ	VTZ	WCVQZ	WCVTZ	VQZ	VTZ
Cu ₂	2.215	0.006	0.010	0.013	0.017	0.058	0.059	0.055	0.048	0.000	0.000	0.000	0.004
Ag_2	2.524	-0.001	0.007	0.011	0.021	0.012	0.016	0.012	0.019	0.034	0.039	0.036	0.045
Au ₂	2.479	-0.001	0.006	0.002	0.011	0.005	0.010	0.009	0.014	0.019	0.024	0.023	0.027
CuH	1.455	-0.008	-0.010	-0.006	-0.005	0.038	0.039	0.037	0.041	0.001	0.001	0.001	0.003
AgH	1.610	-0.007	-0.008	-0.001	0.002	-0.004	-0.003	-0.004	-0.001	0.003	0.004	0.003	0.007
AuH	1.523	-0.003	-0.003	-0.004	-0.003	0.002	0.003	0.001	0.002	0.006	0.006	0.005	0.007
CuF	1.743	-0.013	-0.018	-0.010	-0.012	0.030	0.027	0.031	0.029	-0.024	-0.028	-0.023	-0.025
AgF	1.977	-0.003	-0.008	0.004	0.001	-0.015	-0.017	-0.013	-0.014	-0.002	-0.007	-0.001	-0.004
AuF	1.925	-0.004	-0.007	-0.002	-0.002	-0.023	-0.022	-0.021	-0.019	-0.013	-0.015	-0.011	-0.011
Cu ₃ (linear)	2.291	-0.014	-0.007	-0.005	0.004	-0.009	-0.006	-0.015	0.048	-0.005	-0.003	-0.005	0.001
Ag ₃ (linear)	2.593	-0.008	0.002	0.005	0.017	0.009	0.014	0.008	0.015	0.034	0.038	0.035	0.046
Au ₃ (linear)	2.547	-0.138	-0.132	-0.135	-0.128	-0.098	-0.093	-0.095	-0.090	0.016	0.021	0.019	0.024
$Cu_3(D_{3h})$	2.333	-0.005	0.000	0.002	0.010	0.066	0.072	0.062	0.057	-0.012	-0.005	-0.012	0.001
$Ag_3(D_{3h})$	2.657	-0.009	-0.002	0.004	0.015	0.009	0.014	0.007	0.016	0.029	0.036	0.029	0.046
$Au_3(D_{3h})$	2.624	-0.007	-0.001	-0.004	0.002	0.005	0.009	0.007	0.011	0.020	0.023	0.021	0.024
Cu ₃ +(linear)	2.337	-0.013	-0.004	-0.005	0.006	0.031	0.036	0.027	0.018	-0.024	-0.018	-0.022	-0.014
Ag ₃ +(linear)	2.629	-0.013	-0.002	0.000	0.014	-0.009	-0.002	-0.011	-0.001	0.029	0.035	0.030	0.044
Au ₃ +(linear)	2.577	-0.129	-0.119	-0.126	-0.114	-0.190	-0.185	-0.187	-0.181	0.013	0.019	0.016	0.021
$Cu_{3^+}(D_{3h})$	2.337	-0.007	-0.001	0.001	0.011	0.058	0.064	0.055	0.051	-0.024	-0.017	-0.023	-0.010
$Ag_{3^+}(D_{3h})$	2.650	-0.009	-0.001	0.004	0.016	0.003	0.009	0.002	0.011	0.018	0.024	0.019	0.035

Table S1. Reference Bond Lengths (Å) and Deviations from These Values

reaction	CM1	HF	ΔCC	Δ(T)	ΔCV
1 (Cu)	193.7	46.3	123.7	23.8	-0.1
2 (Cu)	273.1	140.7	121.5	10.5	0.3
3 (Cu)	412.9	235.9	164.2	15.8	-3.0
4 (Cu)	272.2	37.7	194.8	39.6	0.1
5 (Cu)	-25.1	5.8	-23.5	-8.4	1.0
6 (Cu)	675.2	546.6	111.7	13.2	3.7
7 (Cu)	-149.6	-124.6	-26.1	2.3	-1.2
8 (Cu)	545.4	110.0	355.7	80.8	-1.1
9 (Cu)	1731.9	1407.0	267.8	53.5	3.7
10 (Cu)	70.9	-7.9	71.5	7.1	0.3
11 (Cu)	-64.8	-27.4	-29.7	-8.0	0.4
12 (Cu)	-64.1	-55.8	-8.2	-0.9	0.9
13 (Cu)	275.8	183.9	73.5	17.4	1.0
14 (Cu)	148.1	99.3	38.2	10.1	0.5
1 (Ag)	164.6	39.4	102.3	18.5	4.3
2 (Ag)	234.8	117.8	104.9	7.4	4.8
3 (Ag)	340.7	186.8	140.6	15.1	-1.8
4 (Ag)	233.8	30.0	166.8	29.3	7.7
5 (Ag)	-9.3	5.1	-10.1	-3.1	-1.2
6 (Ag)	661.8	533.8	110.6	5.8	11.5
7 (Ag)	-132.1	-120.6	-13.6	7.2	-5.0
8 (Ag)	455.0	110.5	277.5	53.1	13.9
9 (Ag)	1658.6	1339.0	261.9	40.5	17.2
10 (Ag)	48.8	-13.2	51.1	5.0	5.9
11 (Ag)	-42.1	-25.9	-19.8	1.9	1.8
12 (Ag)	-44.5	-47.3	-6.7	5.1	4.5
13 (Ag)	215.2	143.4	54.9	9.8	7.2
14 (Ag)	114.9	81.0	24.4	3.8	5.6
1 (Au)	220.6	75.9	115.8	21.1	7.8
2 (Au)	311.2	167.9	125.1	9.7	8.4
3 (Au)	290.5	121.8	146.3	19.7	2.8
4 (Au)	318.4	75.2	195.2	35.6	12.3
5 (Au)	-14.7	8.7	-15.7	-5.2	-2.5
6 (Au)	828.9	671.3	137.5	6.1	13.9
7 (Au)	-182.8	-165.9	-18.4	8.2	-6.7
8 (Au)	602.8	187.7	327.0	66.1	21.9
9 (Au)	1927.6	1575.0	291.7	42.3	18.6
10 (Au)	136.9	29.3	92.1	5.4	10.1
11 (Au)	1.6	15.8	-11.6	-5.2	2.6
12 (Au)	45.0	47.1	-2.3	-4.5	4.8

 Table S2. CM1 Energies (kJ mol⁻¹) and Their Components for the CUAGAU Set

13 (Au)	297.9	201.4	74.9	12.1	9.6
14 (Au)	192.7	135.8	43.7	5.1	8.2

method	MAD	MD	SD
GAM	23.1	-10.2	31.5
B97-D3BJ	14.4	-6.8	19.6
mBEEF	13.4	1.8	16.8
B97M-rV	14.4	-0.3	18.9
B97-1	16.7	-7.5	21.9
B97-3-D2	30.7	-21.6	36.9
MN15	12.7	0.5	15.9
PW6-B95-D2	17.0	-12.8	20.9
ωB97X	16.7	-11.1	25.3
ωB97X-V	25.3	-23.2	29.9
M11	42.6	-37.0	52.1
ω B97M-V	21.8	-19.6	27.6
DSD-PBEP86	13.3	-7.4	20.7

Table S3. Mean Absolute Deviations (kJ mol⁻¹), Mean Deviations and Standard Deviations of the Deviations for the Various DFT-Type Methods Used in Conjunction with the def2-TZVP Basis Set

Table S4. Mean Absolute Deviations (MADs) (kJ mol⁻¹) from Benchmark Relative Energies for the CUAGAU Set for a Variety of DFT-Type Methods, and the Corresponding Mean Deviations (MDs) and Standard Deviations (SDs) for the Individual Deviations

method	ref	MAD	MD	SD
PBE	1	13.8	7.8	16.5
M06-L	2	20.2	-5.0	28.8
M06	3	14.7	-5.0	18.6
M06-2X	3	47.0	-35.6	54.0
B2-PLYP	4	9.4	-3.6	12.9
B2GP-PLYP	5	9.8	-6.3	12.3
PBE0-D3BJ	6,7	14.1	-12.0	16.5
B3LYP-D3BJ	8,7	14.9	-3.9	20.3
PBE-D3BJ	1,7	15.3	9.8	17.1
B2PLYP-D3BJ	4,7	6.1	-1.1	7.9
B2GP-PLYP-D3BJ	5,7	8.3	-1.8	12.2

1 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

- 2 Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. *J. Chem. Phys.* **2006**, *125*, 194101-1–18.
- 3 Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215–241.
- 4 Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. *J. Chem. Phys.* **2006**, *124*, 034108-1–16.
- 5 Karton, A.; Tarnopolsky, A.; Lamere, J.-F.; Schatz, G. C.; Martin, J. M. L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. *J. Phys. Chem. A* **2008**, *112*, 12868–12886.
- 6 Carlo, A.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. *J. Chem. Phys.* **1999**, *110*, 6158–6170.
- 7 Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465.
- 8 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *J. Phys. Chem.* **1994**, *98*, 11623–11627.