Supporting Information:

Transparent Conductive Printable Meshes Based on Percolation Patterns

Gurvinder Singh Khinda^{a,†}, Matthew Strohmayer^{b,†}, Darshana L. Weerawarne^a, Jack P. Lombardi, III^a, Natalya Tokranova^b, James Castracane^b, Carl A. Ventrice, Jr.^b, Mark D. Poliks^{a,*}, and Igor A. Levitsky^{c,*}

^aSystems Science and Industrial Engineering Department, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902
^bColleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd., Albany, NY 12203
^cCorish, Inc., 150 Harvard St., Fall River, MA 02720

*Email: mpoliks@binghamton.edu; ilevitsky@corishinc.com †These authors contributed equally.

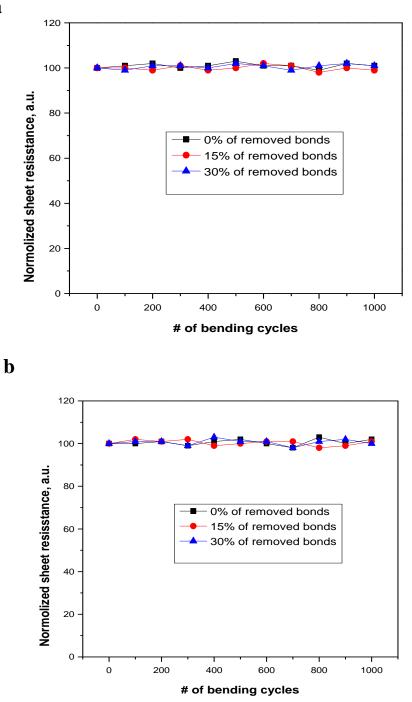


Figure 1S: Dependencies of the sheet resistance on the number of the bending cycles for regular square mesh and percolation meshes with 10 % and 20% of removed bonds. The line width is 60 μ m (**a**) and 120 μ m (**b**).