Electronic Supplementary Information

Aprotic vs protic ionic liquids for lignocellulosic biomass pre-

treatment: Anion effects, enzymatic hydrolysis, solid state NMR, distillation and recycle

Md. Mokarrom Hossain, Aditya Rawal and Leigh Aldous Aldous

^a School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia

^b NMR Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, NSW 2052,

Australia

^c Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK

* leigh.aldous@kcl.ac.uk

Contains 15 pages (from S1 to S15), 4 Tables and 10 Figures

Table S1	Page S2
Table S2	S 3
Table S3	S4
Table S4	S 5
Figure S1	S6
Figure S2	S7
Figure S3	S8
Figure S4	S 9
Figure S5	S10
Figure S6	S11
Figure S7	S12
Figure S8	S13
Figure S9	S14
Figure S10	S15

TABLES

Table S1: List of physical properties for five different ILs used in this study.

Ionic liquid	Melting	pH at 100	Density (g	Viscosity at 25	T _{d (max)}
	point (°C)	g l ⁻¹	cm ⁻³)	°C (mPa s)	(°C)
[Emim][OAc]	< 25	6.5	1.027 ^{a,b}	162 ⁴	245
[Emim]Cl	82 ± 5	5.0	1.112 ^{a,c}	-	307
[Eim][OAc]	< 25	7.0	1.026 ^b	4.2	193
[Eim][HCOO]	< 25	5.1	1.092 ^b	6.9	190
[Eim]Cl	69 ± 5	5.5	1.128 ^c	-	276

^a data from Sigma-Aldrich, ^b at 25 °C, ^c at 80 °C, T_{d (max)} is the temperatures at maximum rate of thermal decomposition

Table S2: Maximum solubility of wood flour and percentage of recovered solid from different ILs.

Ionic liquid	Maximum dissolution (wt%)	Recovered solid (wt%)
[Emim][OAc]	5.5 (± 0.5)	80
[Emim]Cl	2.5 (± 0.5)	48
[Eim]Cl	3.5 (± 0.5)	58
[Eim][OAc]	No dissolution	95
	(only extract lignin)	
[Eim][HCOO]	No dissolution	92
	(only extract lignin)	

Where, [Emim] = 1-ethyl-3-methylimidazolium, [Eim] = 1-ethylimidazolium,

[OAc] = acetate and [HCOO] = formate.

Table S3: Maximum conversion efficiency from different ILs-treated wood after 96 h enzymatic hydrolysis.

Ionic liquid	Maximum enzymatic
	conversion (%)
Untreated wood	15.7 (± 0.6)
[Emim][OAc]	86.7 (± 9.8)
[Emim]Cl	56.2 (± 0.6)
[Eim]Cl	74.6 (± 2.3)
[Eim][OAc]	12.7 (± 1.5)

Where, [Emim] = 1-ethyl-3-methylimidazolium, [Eim] = 1-ethylimidazolium and [OAc] = acetate.

Table S4: ¹³C sNMR chemical shift assigned for various moieties of pine wood. All values and assignments are adapted from reference [1].

Moiety / Functional group	Chemical shift region (ppm)
-COO/ CH₃COO	180-165
Aromatic C-O (C3, 4 of lignin)	160-141
Aromatic C-C (C1 of lignin)	141-125.8
Aromatic C-H (C2, 5, 6 of lignin)	125.8-108.5
C1 of cellulose	108.5-93.5
C4 of cellulose (crystalline)	93.5-86.6
C4 of cellulose (amorphous)	86.6-79.5
C2, 3, 5 of cellulose	79.5-68.0
C6 of cellulose	68.0-58.9
OCH ₃ of lignin	58.9-50.8
CH₃ of hemicellulose	24.1-18.6

FIGURES

Figure S1: Structure of five imidazolium-based protic ([Eim][OAc], [Eim][HCOO], [Eim]Cl) and aprotic ([Emim][OAc], [Emim]Cl) ionic liquids used for wood processing in this study.

$$[Emim][OAc] \qquad [Emim]Cl$$

$$[Eim][OAc] \qquad [Eim][HCOO] \qquad [Eim]Cl$$

Figure S2: ¹H NMR spectra for various [Eim]Cl in presence of excess 1-ethylimidazole (Eim) and HCl acid where the ratio of Eim and HCl was maintained as 1:0 (a), 1:0.5 (b), 1:1 (c), 1:1.5 (d) and 1:2 (e)

Figure S3: DSC curves for imidazolium-based protic ILs, [Eim][OAc], [Eim][HCOO], [Eim]Cl; their precursor 1-ethylimidazole and aprotic [Emim][OAc], [Emim]Cl ionic liquids.

Figure S4: TGA curves for imidazolium-based protic ILs, [Eim][OAc], [Eim][HCOO], [Eim]Cl and their precursor, 1-ethylimidazole.

Please note [Eim][OAc], [Eim][HCOO] and [Eim]Cl were measured as synthesised, with water content <1wt%; the deliquescent, commercial [Emim]Cl was stored in a glovebox, and thus also had a water content of <1wt%; the commercial [Emim][OAc] was taken from the bottle directly (also <1wt% water content), but the significant mass loss before 200 °C is associated with water loss, whereby the water must have been uptaken by the sample from the atmosphere prior to measurement.

Figure S5: (a) UV-Vis spectra (b) plot of absorbance *vs* wood load for different amount of wood loading in [Eim][OAc] where 1 g of IL and different amount of wood flour were taken in round bottom flask at 115 °C for 18 h stirring at 700 rpm with reflux set-up.

Figure S7: Calibration of commercial glucose sensor (Accuchek Active, used in this study) over its detection range (0.6 to 33.1 mM).

Figure S8: Thermogravimetric analysis of untreated wood and regenerated solid from different ionic liquids; [Emim][OAc], [Emim]Cl, [Eim][OAc], and [Eim]Cl.

Figure S9: Photograph of contaminated [Eim]Cl distillation in Kugelrohr apparatus after 1st (a) and 2nd (b) distillation at 200 °C.

Figure S10: Enzymatic conversion of untreated wood, wood heated at 200 °C, regenerated solid from [Eim]Cl using acetone-water mixture, and regenerated solid from [Eim]Cl obtained after distillation in Kugelrohr apparatus.

REFERENCES

[1] Holtman, K. M.; Chen, N.; Chappell, M. A.; Kadla, J. F.; Xu, L.; Mao, J. *J. Agric. Food Chem.* **2010**, *58*, 9882.