Visible-light Excitation of BODIPYs Enables Selfpromoted Radical Arylation at their 3, 5-positions with Diazonium Salts

Dandan Wang, ${ }^{\dagger}$ Cheng Cheng, ${ }^{\dagger}$ Qinghua Wu, ${ }^{\dagger}$ Jun Wang, ${ }^{*, *}$ Zhengxin Kang, ${ }^{\dagger}$ Xing Guo, ${ }^{\dagger}$ Hao Wu, ${ }^{\dagger}$ Erhong Hao, ${ }^{*}{ }^{\dagger}$ and Lijuan Jiao ${ }^{*}{ }^{\dagger}{ }^{\dagger}$

${ }^{\dagger}$ Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
${ }^{\ddagger}$ Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China

*E-mail: junma9003@mail.hfnu.edu.cn; jiao421 @ ahnu.edu.cn; haoehong@ahnu.edu.cn

Contents

1. General information S2
2. Excited state reduction potential of BODIPY 1a S3
3. Synthesis and characterization S5
4. Crystal data S15
5. Mechanism studies S19
6. Photophysical data S21
7. Absorption and emission spectra S23
8. Cellular studies S32
9. DFT caclulations S34
10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HRMS spectra for all new compounds. S41

1. General information

Reagents and solvents were used as received from commercial suppliers (Energy Chemicals, Shanghai, China) unless noted otherwise. The light source is optical parallel reactor (WP-TEC-1020SL, WATTCAS, Shanghai, China). All reactions were performed in oven-dried or flame-dried glassware unless stated otherwise and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300,400 or 500 MHz NMR spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 77 ppm for ${ }^{13} \mathrm{C}$) or to internal TMS. High-resolution mass spectra (HRMS) were obtained using APCI-TOF and ESI-TOF in positive mode.

UV-visible absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2450 and Edinburgh FS5 spectrometers, $190-900 \mathrm{~nm}$ scan range) at room temperature (10 mm quartz cuvette). Relative fluorescence quantum efficiencies of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvents with Cresly Violet perchlorate $(\Phi=0.54 \text { in methanol })^{1}$ and Rhodamine B ($\Phi=0.49$ in Ethanol) ${ }^{2}$ and 1,7-diphenyl-3,5-di(4-methoxyphenyl) azadipyrromethene $\left(\Phi=0.36\right.$ in chloroform). ${ }^{3}$ Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions $(0.01<\mathrm{A}<0.05)$ were used to minimize the reabsorption effects. Quantum yields were determined using the following equation:

$$
\Phi_{\mathrm{X}}=\Phi_{\mathrm{S}}\left(\mathrm{I}_{\mathrm{X}} / \mathrm{IS}_{\mathrm{S}}\right)\left(\mathrm{A}_{\mathrm{S}} / \mathrm{Ax}\right)\left(n_{\mathrm{X}} / n_{\mathrm{S}}\right)^{2}
$$

Where Φ_{S} stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and n stands for the refractive index of the solvent being used. X subscript stands for the test sample, and S subscript stands for the standard.

Cyclic voltammograms of 2 mM 1 1a were measured in dichloromethane solution, containing $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as the supporting electrolyte, glassy carbon electrode as a working electrode, Pt wire as a counter electrode, and saturated calomel electrode (SCE) as reference electrode at $100 \mathrm{mV} \mathrm{s}^{-1}$ of scaning rate at room temperature.

Crystals of compounds $\mathbf{3 n} \mathbf{~ 4 b}$ and $\mathbf{5 a}$ suitable for X-ray analysis were obtained via the slow diffusion of petroleum ether into their dichloromethane solutions. The vial containing this solution was placed, loosely capped, to promote the crystallization. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were collected using a diffractometer equipped with a graphite crystal monochromator situated in the incident beam for data collection at room temperature. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. The determination of unit cell parameters and data collections were performed with Mo $K \alpha$ radiation (λ) at $0.71073 \AA$. Data reduction was performed using the SAINT software which corrects for Lp and decay. The structure was solved by the direct method using the SHELXS-97 program and refined by least squares method on F^{2}, SHELXL-2018/3, incorporated in SHELXTL V5.10. CCDC-1907874 (3n) CCDC-1907883 (4b) and CCDC-1907884 (5a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2. Determination of excited state reduction potential of BODIPY 1a

Excited state reduction potential of BODIPY 1a was estimated to be -0.58 V vs. SCE according to the following equations: ${ }^{4}$
$\mathrm{E}_{1 / 2}\left(\mathbf{1 a}^{+} \cdot / \mathbf{1} \mathbf{a}^{*}\right)=\mathrm{E}^{0 \mathrm{x}}-\mathrm{E}_{0,0}$
where $E^{0 x}$ was obtained from its cyclic voltammetry spectrum (Figure S1); $\mathrm{E}_{0,0}$ was caculated from its photoluminescence maximum (526 nm as shown in Figure S2) using the equation $\mathrm{E}_{0,0}=\mathrm{hc} / \lambda_{\max }=1240 \mathrm{~nm} / \lambda_{\max }$.

Figure S1. Cyclic voltammetry of BODIPY $\mathbf{1 a}$ (2 mM in dichloromethane). $\mathrm{E}^{\mathrm{ox}}=$ +1.78 V vs. SCE)

Figure S2. Fluorescence of BODIPY 1a in dichloromethane

3. Synthesis and characterization

BODIPYs 1a-f were synthesized by following the procedures described in our previous paper. ${ }^{5}$ Diazonium salts $\mathbf{2 a}-\mathbf{j}$ were synthesized according to literature. ${ }^{6}$

Figure S3. Chemical structure of BODIPYs 1a-f and diazonium salts $\mathbf{2 a} \mathbf{- j}$.

General radical C-H monoarylation procedure:

General radical mono-arylation procedure of BODIPYs: To 2.0 ml acetone in a 10 ml reaction tube were added BODIPY $1(0.1 \mathrm{mmol})$ and diazonium salt 2 (0.12 $\mathrm{mmol})$. The mixture was irradiated with 1 W blue LED at room temperature for 1 h , and TLC was used to follow the reaction. Upon the completion of the reaction, the mixture was poured into aqueous NaHCO_{3} and was extracted with dichloromethane $(30 \mathrm{~mL} \times 3)$. Organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and organic solvent was removed under vacuum. The crude product was purified by column chromatography (eluent, petroleum ether/dichloromethane: 2:1-1:1, v/v) on silica to afford the desired BODIPYs $\mathbf{3}$ as red solids.

BODIPY 3a: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2a ($27 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 a}$ in $52 \%(24 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $159.82,144.07,139.15,137.08,136.64,135.45,134.06,131.67,131.36,130.99$, $130.41,128.86,128.64,128.38,121.39$, 119.06. HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{BCl}_{3} \mathrm{FN}_{2}$ [M-F] ${ }^{+}: 427.0143$, found 427.0167 .

Synthesis of 3a at $\mathbf{1} \mathbf{~ m m o l}$ scale: To 4.0 ml acetone in a 10 ml reaction tube were added BODIPY 1a ($1 \mathrm{mmol}, 340 \mathrm{mg}$) and diazonium salt $\mathbf{2}(1.2 \mathrm{mmol}, 270 \mathrm{mg})$. The mixture was irradiated with 1 W blue LED at room temperature for 2 h , and TLC was used to follow the reaction. Upon the completion of the reaction, the mixture was poured into aqueous NaHCO_{3} and was extracted with dichloromethane ($30 \mathrm{~mL} \times 3$). Organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and organic solvent was removed under vacuum. The crude product was purified by column chromatography (eluent, petroleum ether/dichloromethane: $2: 1, \mathrm{v} / \mathrm{v}$) on silica to afford the desired BODIPYs 3a in 46% (205 mg) as orange solid.

BODIPY 3b: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2b ($34 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 b}$ in $47 \%\left(23 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.83,144.16,139.20,137.15,135.51,134.12$, $131.82,131.68,131.36,131.18,130.96,130.89,128.72,128.39,125.16,121.33$, 119.09. HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BCl}_{3} \mathrm{~F}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 490.9695$, found 490.9703 .

BODIPY 3c: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c ($30 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 c}$ in $54 \%(34 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 3 \mathrm{H})$, $6.74(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.46,146.09,140.32,137.03,136.35,135.31,134.92,132.28$, $131.64,131.48,131.13,130.59,130.28,130.22,130.17,128.54,121.12,120.12$, 118.83, 113.39. HRMS calcd. For $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{BCl}_{2} \mathrm{FN}_{3}[\mathrm{M}-\mathrm{F}]^{+}: 418.0485$ found 418.0509 .

BODIPY 3d: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2d ($29 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 d}$ in $42 \%(19 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta: 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.46(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J$ $=4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 156.73,148.32,146.42,140.40$, 138.27, 137.05, 135.39, 134.97, 131.59, 131.33, 130.48, 130.37, 128.46, 123.70, 121.08, 120.26, 105.12. HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{BCl}_{2} \mathrm{FN}_{3} \mathrm{O}_{2}$ [M-F] ${ }^{+}: 483.0384$, found 483.0382 .

BODIPY 3e: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2e ($25 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ for 12 h affords $\mathbf{3 e}$ in $40 \%(16 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.75$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 161.76,143.35,138.85,137.15,135.55$, $133.77,131.95,131.78,131.28,131.13,130.47,129.69,128.53,128.36,128.07$, 121.83, 118.66. HRMS calcd. For $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 393.0533$, found 393.0552.

BODIPY 3f: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 f}(26 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 f}$ in $45 \%(20 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H})$, 7.31 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $162.20,142.63,141.07,138.25,137.27,135.56,133.55,131.84,131.22,129.70$, $129.35,129.03,128.33,127.49,121.91,118.30$ 21.72. HRMS calcd. For $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 407.0689$, found 407.0672.

BODIPY 3g: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 g}(30 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 c}$ in $49 \%\left(28 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: $7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 4 \mathrm{H}), 744-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.74$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37$ ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.40,154.21,142.75,138.86$, 137.61, 135.86, 133.77, 132.11, 131.53, 129.83, 129.19, 128.61, 127.71, 125.89, $122.25,118.57,35.36,31.58$. HRMS calcd. For $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]{ }^{+}: 449.1159$, found 449.1142.

BODIPY 3h: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2h $(27 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 h}$ in $30 \%(14 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.03$
(d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.08,161.75,141.83$, $137.49,135.61,133.31,131.92,131.7,131.42,131.17,128.32,126.85,124.20$, 121.92, 117.98, 114.14, 55.53. HRMS calcd. For $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BCl}_{2} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}-\mathrm{F}]{ }^{+}: 423.0639$, found 423.0663 .

BODIPY 3i: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 i}$ ($30 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 i}$ in $35 \%\left(16 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.55(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49$ (m, 4H), $7.43-7.41(\mathrm{~m}, 1 \mathrm{H}) 6.81(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.64$, $143.32,138.64,137.39,135.57,134.13,133.85,133.07,131.82,131.28,131.13$, $130.32,129.31,128.36,128.14,128.00,127.84,127.64,126.68,126.53,126.48$, 126.42, 122.18, 118.64. HRMS C $2_{25} \mathrm{H}_{15} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}$: 443.0689, found 443.0705.

BODIPY 3j: BODIPY 1b ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 c}(30 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 j}$ in $41 \%(15 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 5 \mathrm{H})$, $6.99(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 156.31,147.07,144.76,137.35$, 136.79, 134.97, 133.90, 132.31, 132.18, 131.71, 130.95, 130.69, 130.10, 130.07, $130.04,128.65,120.43,119.47,118.81,113.08$. HRMS $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{BFN}_{3}[\mathrm{M}-\mathrm{F}]{ }^{+}$: 350.1265 , found 350.1269 .

BODIPY 3k: BODIPY 1c ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c ($30 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 k}$ in $50 \%(21 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{t}$, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.25,147.31,144.87,139.16,137.68$, $136.71,136.56,135.40,132.17,130.73,130.36,130.04,129.77,128.39,120.41$, 119.51, 118.82, 113.03, 21.29, 20.18. HRMS C $2_{25} \mathrm{H}_{20} \mathrm{BFN}_{3}$ [M-F] ${ }^{+}: 392.1734$, found 392.1730.

BODIPY 3I: BODIPY 1d ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c ($30 \mathrm{mg}, 0.12$ mmol) for 1 h affords 3 l in $37 \%\left(15 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J$
$=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.27,155.57,147.15$, $144.07,137.26,136.94,134.82,132.63,132.15,131.45,130.04,126.39,120.18$, $119.22,118.85,114.26,112.92,55.71$. HRMS $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BFN}_{2} \mathrm{O}$ [M-F] ${ }^{+}: 380.1370$, found 380.1360 .

BODIPY 3m: BODIPY $\mathbf{1 e}(22 \mathrm{mg}, 0.1 \mathrm{mmol})$ and diazonium salt $\mathbf{2 c}(26 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 m}$ in $48 \% ~\left(16 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 164.06,151.79,145.80,137.64,136.67,135.16,132.07,129.81$, $129.78,129.75,127.22,124.42,122.24,119.06,118.52,112.10,15.48,11.56$. HRMS $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BFN}_{3}[\mathrm{M}-\mathrm{F}]^{+}: 302.1265$, found 302.1270.

BODIPY 3n: BODIPY 1c ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 j}$ ($29 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 n}$ in $38 \%(17 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.76$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.41,148.60$, $147.30,144.09,139.03,136.64,136.26,135.31,132.85,132.13,130.48,129.94$, $129.87,128.34,128.04,124.67,119.94,118.75,21.28,20.17$. HRMS C $2_{24} \mathrm{H}_{20} \mathrm{BFN}_{3} \mathrm{O}_{2}$ $[\mathrm{M}-\mathrm{F}]^{+}: 412.1633$, found 412.1630.

BODIPY 3o: BODIPY $\mathbf{1 f}(21 \mathrm{mg}, 0.1 \mathrm{mmol})$ and diazonium salt 2a ($27 \mathrm{mg}, 0.12$ mmol) for 1 h affords $\mathbf{3 o}$ in $42 \% ~\left(13 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ $(\mathrm{s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.99,144.28,142.55,137.68,136.22,135.13,130.96$, 130.92, 130.89, 129.07, 128.83, 127.14, 120.23, 118.16, 16.32. HRMS $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BClF}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 317.0828$, found 317.08255.

General radical C-H diarylation procedure:

General radical dis-arylation procedure of BODIPYs: To 2.0 ml acetone in a 10 ml reaction tube were added BODIPY $1(0.1 \mathrm{mmol})$ and diazonium salt $\mathbf{2}(0.4 \mathrm{mmol})$. The mixture was irradiated with 10 W blue LED at room temperature around 3 h , and TLC was used to follow the reaction. Upon the completion of the reaction, the mixture was poured into aqueous NaHCO_{3} and was extracted with dichloromethane ($30 \mathrm{~mL} \times 3$). Organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and organic solvent was removed under vacuum. The crude product was purified by column chromatography (eluent, petroleum ether/dichloromethane: 2:1-1:1, v/v) on silica to afford the desired BODIPYs $\mathbf{4}$ as dark red solids.

BODIPY 4a: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2a ($90 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 a}$ in $68 \%(38 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.85 (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.68$ (d, $J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.60(\mathrm{~d}, ~ J=4.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.67,136.28,135.76$, 131.32, 131.02, 130.96, 130.91, 130.80, 129.49, 128.79, 128.40, 127.91, 127.58, 121.46. HRMS calcd. For $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{BCl}_{4} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 537.0066$, found 537.0052.

Synthesis of 4a at $\mathbf{1} \mathbf{~ m m o l}$ scale: To 4.0 ml acetone in a 10 ml reaction tube were added BODIPY 1a ($1 \mathrm{mmol}, 340 \mathrm{mg}$) and diazonium salt $2(4 \mathrm{mmol}, 900 \mathrm{mg})$. The mixture was irradiated with 10 W blue LED at room temperature for 6 h , and TLC was used to follow the reaction. Upon the completion of the reaction, the mixture was poured into aqueous NaHCO_{3} and was extracted with dichloromethane ($30 \mathrm{~mL} \times 3$). Organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and organic solvent was removed under vacuum. The crude product was purified by column chromatography (eluent, petroleum ether/dichloromethane: $2: 1, \mathrm{v} / \mathrm{v}$) on silica to afford the desired BODIPYs $\mathbf{4 a}$ in $52 \% ~(289 \mathrm{mg}$) as red solid.

BODIPY 4b: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2b ($136 \mathrm{mg}, 0.6$ mmol) for 24 h affords $\mathbf{4 b}$ in $68 \%(44 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.78$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.57$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.51$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$ $7.43(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 158.70,137.74,136.33,135.71,131.86,131.74,131.33,131.23,131.1$, 129.54, 128.40, 124.79, 121.49. HRMS calcd. For $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{BBr}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 666.8932, found 666.8939 .

BODIPY 4c: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c ($93 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 a}$ in 67% (36 mg) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta: 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.94,139.53$, 136.90 , 136.36, 135.59, 132.20, 131.65, 131.44, 130.32, 130.17, 128.52, 121.99, 118.61, 113.46.HRMS calcd. For $\mathrm{C}_{29} \mathrm{H}_{15} \mathrm{BCl}_{2} \mathrm{FN}_{4}[\mathrm{M}-\mathrm{F}]^{+}: 519.0751$, found 519.0763.

BODIPY 4d: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2d ($95 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 d}$ in $61 \%\left(35 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.48$ $(\mathrm{m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 157.61,148.39,139.87,138.12,137.03,135.51,131.74,131.28,130.54$, $130.50,128.54,123.69,122.18$. HRMS calcd. For $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{BCl}_{2} \mathrm{FN}_{4} \mathrm{O}_{4}[\mathrm{M}-\mathrm{F}]{ }^{+}$: 559.0547, found 559.0547.

BODIPY 4e: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2e ($84 \mathrm{mg}, 0.4$ mmol) for 36 h affords 4 e in $65 \%\left(26 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 9 \mathrm{H}), 6.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.92,137.29,136.08,135.82,132.50$, 132.12, 131.15, 129.86, 129.65, 129.16, 128.39, 128.34, 121.54. HRMS calcd. For $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 469.0846$, found 469.0863 .

BODIPY 4f: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 f}$ ($84 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 f}$ in 58% (30 mg) isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 6.62$ (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.82,140.12,136.44,135.97,135.86,132.24,131.08$, 129.74, 129.61, 129.21, 128.87, 128.30, 121.34, 21.66. HRMS calcd. For $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 497.1159$, found 497.1159.

BODIPY 4g: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 g}$ ($124 \mathrm{mg}, 0.5$ mmol) for 3 h affords $\mathbf{4 g}$ in 42% (25 mg) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.61(\mathrm{~m}$, 4 H), $1.35(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.73,153.01,136.33,136.04$, $135.88,132.29,131.07,129.66,129.43,128.79,128.30,125.49,121.52,34.98,31.36$. HRMS calcd. For $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}: 581.2098$, found 581.2070.

BODIPY 4h: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2h $(89 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 h}$ in 41% (22 mg) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ס: 7.93 (d, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.61-6.59(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.04$, $159.19,135.94,135.48,132.30,131.39,131.34,131.01,128.60,128.29,125.13$, 121.06, 113.98, 55.09. HRMS calcd. For $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{BCl}_{2} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{F}]^{+}$: 529.1057, found 529.1080 .

BODIPY4i: BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 i}$ ($250 \mathrm{mg}, 1 \mathrm{mmol}$) for 24 h affords $\mathbf{4 i}$ in $49 \%\left(28 \mathrm{mg}\right.$) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.43$ (s, 2H), 8.05 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91-7.87 (m, 4H), 7.83 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-$ $7.47(\mathrm{~m}, 7 \mathrm{H}), 6.75(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 159.84,136.38,135.87,138.88,133.06,132.21,131.20,129.98,129.89$, 129.16, 128.37, 127.98, 127.78, 127.25, 126.78, 126.74, 126.43, 121.96. HRMS calcd. For $\mathrm{C}_{35} \mathrm{H}_{21} \mathrm{BCl}_{2} \mathrm{FN}_{2}[\mathrm{M}-\mathrm{F}]^{+}$: 569.1159 , found 569.1181.

BODIPY 4j: BODIPY 1b ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c ($93 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 j}$ in 45% (21 mg) isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.73$ (d, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.65-7.56$ (m, 5H), $6.70(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.69(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.96,146.46$, 137.20, 136.71, 133.89, 132.18, 132.12, 130.95, 130.74, 130.12, 128.68, 121.42, 118.68, 113.24. HRMS calcd. For $\mathrm{C}_{29} \mathrm{H}_{17} \mathrm{BFN}_{4}[\mathrm{M}-\mathrm{F}]^{+}: 451.1530$, found 451.1533.

BODIPY 4k: BODIPY 1c ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2c $(93 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 k}$ in $36 \%(18 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.98$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.73 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.00$ (s, 2H), 6.75 (d, $J=4.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.87,146.61,139.29,137.50,136.68,136.64,132.17,130.65,130.08,129.75$, 128.46, 121.42, 118.70, 113.16, 21.30, 20.25. HRMS calcd. For $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{BFN}_{4}[\mathrm{M}-\mathrm{F}]{ }^{+}$: 493.2000, found 493.2008.

BODIPY 41: BODIPY 1d ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 c}(93 \mathrm{mg}$, 0.4 mmol) for 3 h affords 4 l in 28% (14 mg) isolated yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.69 (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.26,156.26,146.59,137.08,136.75,132.69$, $132.16,131.95,130.09,126.33,121.22,118.59,114.29,113.04,55.83$. HRMS calcd. For $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{BFN}_{4} \mathrm{O}[\mathrm{M}-\mathrm{F}]^{+}: 481.1636$, found 481.1631 .

BODIPY 4n: BODIPY 1c ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt $\mathbf{2 j}$ ($94 \mathrm{mg}, 0.4$ mmol) for 3 h affords $\mathbf{4 n}$ in $41 \%(23 \mathrm{mg})$ isolated yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 6.73$ (d, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.12,148.31,146.61,139.02,136.84,136.08,132.81$, 132.23, 130.24, 129.89, 128.34, 127.96, 124.55, 120.22, 21.32, 20.27. HRMS calcd. For $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BFN}_{4} \mathrm{O}_{4}[\mathrm{M}-\mathrm{F}]^{+}: 533.1796$, found 533.1795 .

BODIPY 4o: BODIPY 1f ($21 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diazonium salt 2a ($90 \mathrm{mg}, 0.4$ mmol) for 3 h affords 4 o in 51% (22 mg) isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.79-7.74 (m, 4H), $7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.19,142.55,137.01$, 135.96, 131.19, 130.95, 130.91, 130.87, 128.78, 127.88, 120.51, 16.27. HRMS $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BCl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 427.0752$, found 427.07405 .

Indole-Fused BODIPY 5a:

BODIPY 5a: In the experimental procedure in the reference. BODIPY 3n $(0.15 \mathrm{mmol}$, 65 mg), $\mathrm{PPh}_{3}(0.75 \mathrm{mmol}, 197 \mathrm{mg}), 2.0 \mathrm{~mL}$ ortho-dichlorobenzene (o-DCB) were added as solvent in a 10 mL Schlenk reaction tube, and heated at $150{ }^{\circ} \mathrm{C}$ under argon gas protection for $24 \mathrm{~h}, \mathbf{5 a}$ was isolated with $60 \%(36 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.10(\mathrm{~m}$, $2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{brs}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 150.76,150.33,144.12$, $140.56,140.06,139.80,138.58,136.89,135.36,130.98$, 130.49, 128.18, 126.24, 125.08, 121.18, 116.66, 114.63, 114.60, 112.22, 103.77, 21.27, 20.15. HRMS calcd. For $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BFN}_{3}[\mathrm{M}-\mathrm{F}]^{+}: 380.1734$, found 380.1726 .

Indole-Fused BODIPY 5b:

BODIPY 5b: BODIPY 4n ($0.1 \mathrm{mmol}, 55 \mathrm{mg}$), PPh $_{3}(1.0 \mathrm{mmol}, 262 \mathrm{mg}), 2.0 \mathrm{~mL}$ oDCB were added as solvent in a 10 mL Schlenk reaction tube, and heated at $150^{\circ} \mathrm{C}$ under argon gas protection for $36 \mathrm{~h}, \mathbf{5 b}$ was isolated with 31% (15 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz, d6-DMSO) $\delta: 10.59$ (s, 2H), 7.99 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 - 7.35 (m, 2H), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) 7.12$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 ($\mathrm{s}, 2 \mathrm{H}$), 5.93 ($\mathrm{s}, 2 \mathrm{H}$), 2.34 (s, 3H), 2.15 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta: 149.09,145.56,141.07$, 139.73, 139.34, $137.92,136.20,130.28,129.09,128.01,122.71,119.66,113.56,112.64,101.74,20.7$, 19.69. HRMS calcd. For $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BFN}_{4}[\mathrm{M}-\mathrm{F}]^{+}: 469.2000$, found 469.1992.

4. Crystal data

Table S1. Selected Geometrical Parameters of 3n, 4b and 5a obtained from crystallography

	3n	4b	5a
B-N bond length (\AA)	$1.5459(26)$	$1.5596(63)$	$1.5166(41)$
	$1.5581(26)$	$1.5643(62)$	$1.5354(40)$
dihedral angles between meso- mesityl group and dipyyrin core (deg)	$83.919(42)$	$82.906(145)$	$86.766(72)$
dihedral angles of two pyrrole rings in dipyyrin core (deg)	$5.936(53)$	$5.169(136)$	$10.658(122)$
dihedral angles between α-aryl group and dipyyrin core (deg)	$58.937(62)$	$36.828(169)$	$4.038(77)$
the average and maximum deviations of the eleven atoms from the mean plane of dipyrrin $\left(\mathrm{C}_{9} \mathrm{~N}_{2}\right)$ core and indole (\AA)	$/$	$41.219(169)$	$/$
the interplanar distance of two adjacent molecules (\AA)	6.1417	2.1049	$0.113 / 0.2838$

Table S2. Crystal experimental details.

	3n	4b	5a
Crystal data Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{15} \mathrm{BBr}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2} \\ \mathrm{~N}_{2} \end{gathered}$	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BF}_{2} \mathrm{~N}_{3}$
M_{r}	431.24	646.94	339.27
Crystal system, space group	Monoclinic, $P 2{ }_{1} / \mathrm{c}$	Monoclinic, $P 2_{1} / \mathrm{c}$	Orthorhombic, $P 2_{12} 2_{1}{ }_{1}$
Temperature (K)	300(2)	300(2)	298.15
$a, b, c(\AA)$	12.9718(5),	12.998(2),	10.0602(6),
	14.7930(6),	$11.2288(14)$,	11.9480(8),
	12.7375(18)	18.281(3)	17.5342(11)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{gathered} 90,117.8580(10), \\ 90 \end{gathered}$	90, 104.899(5), 90	90, 90, 90
$V\left(\AA^{3}\right)$	2160.96(14)	2578.4(6)	2107.6(2)
Z	4	4	4
$D_{\text {cale. }}\left(\mathrm{Mg} \cdot \mathrm{m}^{-3}\right)$	1.326	1.667	1.258
Radiation type	Mo K α	Mo K α	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.097	3.386	0.087
Crystal size (mm)	$0.20 \times 0.21 \times 0.20$	$0.21 \times 0.21 \times 0.2$	$0.22 \times 0.21 \times 0.21$
Diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD	Bruker APEX-II CCD
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.097	3.386	0.087
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	42127, 4966, 3824	66241, 5909, 3916	52266, 4827, 3428
$R_{\text {int }}$	0.0725	0.1528	0.0632
$\left.\theta_{\text {max }}{ }^{[}\right]$	27.528	27.495	27.57
$\left.\theta_{\text {min }}{ }^{\circ}{ }^{\circ}\right]$	3.277	2.866	2.88
$\mathrm{R}_{1}\left[\mathrm{I} \geqslant \mathrm{\sigma}^{(I)}\right]$	0.0528	0.0947	0.0599
wR_{2}	0.1534	0.2282	0.1525
No. of reflections	3824	3916	5041
No. of parameters	292	325	281
Wavelength	0.71073	0.710760	0.71073
Largest diff. peak/hole (eA ${ }^{-3}$)	0.254, -0.241	0.883, -0.728	0.1756, -0.1693
Parameter	292	325	274

Figure S4. Top (a) and front (b) views of X-Ray structures of BODIPY 3n, and Crystal packing (c).C, light gray; N, blue; B, dark yellow; F, bright green; O, red. Hydrogen atoms have removed for clarity.

Figure S5. Top (a) and front (b) views of X-Ray structures of BODIPY 4b, and Crystal packing (c).C, light gray; N, blue; B, dark yellow; F, bright green; O, red; Cl, dark green; Br, Green. Hydrogen atoms have removed for clarity.

Figure S6. Top (a) and front (b) views of X-Ray structures of BODIPY 5a, and Crystal packing (c).C, light gray; N, blue; B, dark yellow; F, bright green. Hydrogen atoms have removed for clarity.

5. Mechanism studies

5.1 Stern-Volmer emission quenching

Steady-state emission spectra were recorded using Edinburgh FS5 spectrometers. To a degassed acetonitrile solution of BODIPY $1 \mathbf{1 a}\left(9 \times 10^{-6} \mathrm{M}\right)$ was added various amount of 4-chlorophenyl diazonium salt 2a. The emission spectra of $\mathbf{1 a}$ was then collected under excitation at 480 nm as shown in Figure S7a.

The emission intensity of $\mathbf{1 a}$ at 526 nm was used to determine the Stern-Volmer quenching values (Figure S7b). The Stern-Volmer plot, as shown in Figure S5b, shows a linear correlation between the amounts of $\mathbf{2 a}$ and the ratio $\mathrm{I}_{0} / \mathrm{I}$. ${ }^{7,8}$

Figure S7. (a) The emission spectra of BODIPY $1 \mathrm{a}\left(9 \times 10^{-6} \mathrm{M}\right)$ in acetonitrile at 25 ${ }^{\circ} \mathrm{C}$ with increasing amounts of 4-chlorophenyl diazonium salt $\mathbf{2 a}(0-0.17 \mathrm{M})$ under excitation at 480 nm . (b) The Stern-Volmer plot of 1a vs. [2a].

5.2 The influence of TEMPO to radical arylation reaction

When the radical scavenger TEMPO were added into the standard reaction between the aryl diazonium salt 2a and BODIPY 1a, the reaction was significantly inhibited. As shown in Scheme S1a, 4.0 equiv of TEMPO ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) were combined with the diazonium salt $\mathbf{2 a}$ ($90 \mathrm{mg}, 0.4 \mathrm{mmol}$) in 2.0 mL acetone, followed by addition of BODIPY 1a ($34 \mathrm{mg}, 0.1 \mathrm{mmol}$) under standard diarylation reaction condition, this reaction only gave $\mathbf{3 a}$ in 20% yield with no formation of diarylated $\mathbf{4 a}$. Increasing the amount of TEMPO to 8 equiv (Scheme S1b), no desired arylated BODIPYs were dectected and most of BODIPY 1a was recovered.

Scheme S1. The influence of TEMPO to this radical arylation reaction

5.3 Synthesis of 4a under Ar

Scheme S2. Synthesis of 4a under Ar
The reaction between 1a and 2a under Ar was studied (Scheme S1). This reaction gave similar result to the standard reaction under air, indicating that O_{2} is not involved in this arylation reaction.

6. Photophysical data

Table S3. Photophysical properties of BODIPYs 3 and 4 at room temperature in dichloromethane

dyes	$\lambda_{\text {abs }}{ }^{\text {max }}(\mathrm{nm})$	$\lambda_{\mathrm{em}}{ }^{\text {max }}(\mathrm{nm})$	$\varepsilon\left(\mathrm{cm}^{-1} \mathrm{M}^{-1}\right)$	$\Phi^{\text {a }}$	Stokes-shift (cm^{-1})
$1 \mathrm{c}^{\text {b }}$	500	515	77300	0.99	480
3a	544	567	51400	0.66	750
3b	544	568	59170	0.99	764
3 c	543	567	56200	0.67	800
3d	546	570	50883	0.71	770
3 e	540	565	52600	0.68	820
3 f	546	567	47864	0.72	650
3g	547	566	50403	0.67	630
3h	557	584	74300	0.53	850
3 i	553	582	67100	0.56	920
3j	529	555	55200	0.08	890
3k	529	555	72800	0.77	890
31	527	548	45751	0.21	770
3m	523	551	57200	0.82	990
3n	511	526	80500	0.01	560
30	522	544	67000	0.87	775
4a	575	613	59100	0.99	1120
4b	575	610	49878	0.99	1000
4c	569	611	42200	0.99	1210
4d	578	619	43451	0.99	1180
4e	568	604	48800	0.99	1050
4 f	577	613	47622	0.86	1010
4g	580	615	46154	0.81	990
4h	596	637	73500	0.85	1080
$4 i$	590	633	51900	0.84	1170
4j	557	597	58100	0.99	1200
4k	559	595	49696	0.99	1100

$\mathbf{4 1}$	552	590	34091	0.99	1190
$\mathbf{4 n}$	523	554	82400	<0.01	1090
$\mathbf{4 0}$	548	586	56400	0.89	1180
$\mathbf{5 a}$	596	628	31100	0.17	860
$\mathbf{5 b}$	680	698	59850	0.31	380
$\mathbf{6}^{\mathbf{c}}$	607	622	145500	0.71	394

${ }^{a}$ The fluorescence quantum yields of 4a-l and 5a were calculated using Cresyl Violet perchlorate ($\phi=0.54$ in methanol) as the reference. The fluorescence quantum yields of 3a-n were calculated using Rhodamine B ($\phi=0.49$ in ethanol) as the reference. The fluorescence quantum yields of $\mathbf{5 b}$ were calculated using 1, 7-diphenyl-3, 5-di(4-methoxyphenyl) -azadipyrromethene ($\phi=0.36$ in chloroform) as the reference. The standard errors are less than 10%. ${ }^{\text {b }}$ Date from ref 9. ${ }^{\text {c }}$ Date from ref 10

7. Absorption and emission spectra of all BODIPYs recorded in dichloromethane at room temperature

Figure S8: Absorption (left) and emission (right) spectra of compound 3a recorded in dichloromethane (Excited at 520 nm)

Figure S9: Absorption (left) and emission (right) spectra of compound 3b recorded in dichloromethane (Excited at 510 nm)

Figure S10: Absorption (left) and emission (right) spectra of compound 3c recorded in dichloromethane (Excited at 520 nm).

Figure S11: Absorption (left) and emission (right) spectra of compound 3d recorded in dichloromethane (Excited at 510 nm)

Figure S12: Absorption (left) and emission (right) spectra of compound 3e recorded in dichloromethane (Excited at 520 nm)

Figure S13: Absorption (left) and emission (right) spectra of compound 3f recorded in dichloromethane (Excited at 510 nm)

Figure S14: Absorption (left) and emission (right) spectra of compound $\mathbf{3 g}$ recorded in dichloromethane (Excited at 510 nm)

Figure S15: Absorption (left) and emission (right) spectra of compound 3h recorded in dichloromethane (Excited at 520 nm)

Figure S16: Absorption (left) and emission (right) spectra of compound 3i recorded in dichloromethane (Excited at 520 nm)

Figure S17: Absorption (left) and emission (right) spectra of compound $\mathbf{3 j}$ recorded in dichloromethane (Excited at 500 nm)

Figure S18: Absorption (left) and emission (right) spectra of compound $\mathbf{3 k}$ recorded in dichloromethane (Excited at 510 nm)

Figure S19: Absorption (left) and emission (right) spectra of compound 31 recorded in dichloromethane (Excited at 510 nm)

Figure S20: Absorption (left) and emission (right) spectra of compound 3m recorded in dichloromethane (Excited at 500 nm)

Figure S21: Absorption (left) and emission (right) spectra of compound 3n recorded in dichloromethane (Excited at 500 nm)

Figure S22: Absorption (left) and emission (right) spectra of compound 3o recorded in dichloromethane (Excited at 490 nm)

Figure S23: Absorption (left) and emission (right) spectra of compound 4a recorded in dichloromethane (Excited at 550 nm)

Figure S24: Absorption (left) and emission (right) spectra of compound $\mathbf{4 b}$ recorded in dichloromethane (Excited at 540 nm)

Figure S25: Absorption (left) and emission (right) spectra of compound 4c recorded in dichloromethane (Excited at 550 nm)

Figure S26: Absorption (left) and emission (right) spectra of compound $\mathbf{4 d}$ recorded in dichloromethane (Excited at 540 nm)

Figure S27: Absorption (left) and emission (right) spectra of compound 4e recorded in dichloromethane (Excited at 550 nm)

Figure S28: Absorption (left) and emission (right) spectra of compound $\mathbf{4 f}$ recorded in dichloromethane (Excited at 540 nm)

Figure S29: Absorption (left) and emission (right) spectra of compound $\mathbf{4 g}$ recorded in dichloromethane (Excited at 540 nm)

Figure S30: Absorption (left) and emission (right) spectra of compound $\mathbf{4 h}$ recorded in dichloromethane (Excited at 570 nm)

Figure S31: Absorption (left) and emission (right) spectra of compound 4i recorded in dichloromethane (Excited at 570 nm)

Figure S32: Absorption (left) and emission (right) spectra of compound $\mathbf{4 j}$ recorded in dichloromethane (Excited at 530 nm)

Figure S33: Absorption (left) and emission (right) spectra of compound $\mathbf{4 k}$ recorded in dichloromethane (Excited at 530 nm)

Figure S34: Absorption (left) and emission (right) spectra of compound 41 recorded in dichloromethane (Excited at 530 nm)

Figure S35: Absorption (left) and emission (right) spectra of compound4n recorded in dichloromethane (Excited at 500 nm)

Figure S36: Absorption (left) and emission (right) spectra of compound 40 recorded in dichloromethane (Excited at 520 nm)

Figure S37: Absorption (left) and emission (right) spectra of compound 5a recorded in dichloromethane (Excited at 550 nm)

Figure S38: Absorption (left) and emission (right) spectra of compound $\mathbf{5 b}$ recorded in dichloromethane (Excited at 635 nm)

8. Cellular studies

Cell Culture

The HeLa cells were cultured in a Roswell Park Memorial Institute 1640 medium (RPMI-1640, Gibco, America) with 10\% fetal bovine serum (FBS, Lonsera, Shanghai, China) at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

Cytotoxicity Determined by the CCK-8 Method

The HeLa cells were plated at 5000 cells per well in a 96 -well plate in a 1640 medium and allowed to grow for 24 h . A gradient concentration of $\mathbf{5 b}$ from 1 to $100 \mu \mathrm{M}$ in a fresh medium was added as a replacement, and the cells were incubated for 24 h at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. The working solutions were then removed, and the cells were washed with PBS buffer two times. A total of $10 \mu \mathrm{~L}$ of CCK-8 (Cell Counting Kit-8, BIOMIKY) was added into each well, and the cells were further incubated at $37{ }^{\circ} \mathrm{C}$ for 1 h in a $10 \% \mathrm{CO}_{2}$ humidified atmosphere. The plate was then shaken for 5 min , and the absorbance was measured at 450 nm using a microplate reader.

Figure S39. Viability of HeLa cells treated with $0,1,2,5,10,20,30,40,50$ and 100 $\mu \mathrm{M} 5 \mathrm{~b}$ for 24 h .

Cell Incubation and Imaging

A total of 30000 HeLa cells were seeded into a glass bottom dish with the same procedure above. A solution of $\mathbf{5 b}$ solution in RPMI-1640 medium (containing 1\% DMSO, $5 \mu \mathrm{M}$) was added to the above cells and incubated for another 15 min at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. The working solutions were then removed, and the cells were then washed with PBS two times and fixed by 4% formaldehyde for 20 min . The organelle tracer DAPI ($1.67 \mu \mathrm{~g} / \mathrm{mL}$) was added subsequently and incubated for 20 min to stain the nucleus. The above solution in dish was removed, and the cells were washed with PBS buffer two times before imaging using a confocal fluorescence microscope (Leica Microsystems SP8 MP).

Figure S40. Confocal fluorescence images of HeLa cells stained with $\mathbf{5 b}(5 \mathrm{uM})$ and DAPI. (a) Bright field. (b) DAPI fluorescence. (c) 5b fluorescence after incubation for 15 min , using excitation wavelengths of 638 nm , and recording over the $650-760 \mathrm{~nm}$ spectral regions. (d) merged images of parts b and c.

9. DFT caclulations

The ground state geometry was optimized by using DFT method at B3LYP/6-31G(d) level. The same method was used for vibrational analysis to verify that the optimized structures correspond to local minima on the energy surface. TD-DFT computations were used the optimized ground state geometries under the B3LYP/6-31+G(d,p) theoretical level. NICS(0) values were calculated at the GIAO-B3lyp/6-31+G(d,p) level. The calculated molecules in dichloromethane were done using the SelfConsistent Reaction Field (SCRF) method and Polarizable Continuum Model (PCM). All of the calculations were carried out by the methods implemented in Gaussian 09 package. ${ }^{11}$

1c

5b

indole

Figure S41. NICS(0) values (ppm) for BODIPY 1c, 5b, $\mathbf{6}$ and indole, calculated at the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level.

Figure S42. HOMO-LUMO energy levels and the interfacial plots of the orbitals for BODIPYs $\mathbf{6 , 1} \mathbf{c}$ and $\mathbf{5 b}$.

Table S4. Selected electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of the BODIPYs 5a, 5b and $\mathbf{6}$ calculated by TDDFT/B3LYP/6-31+G(d,p), based on the optimized ground state geometries. The TDDFT of all the molecules in dichloromethane were using the Self Consistent Reaction Field (SCRF) method and the Polarizable Continuum Model (PCM).

Electronic transition		TD//B3LYP/6-31+G(d, p)			
		Energy/ $\mathrm{eV}^{\text {[a] }}$	$f^{[b]}$	Composition ${ }^{[\mathrm{c}]}$	CI ${ }^{[d]}$
5a	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	2.2748 eV 545.02 nm	0.1247	HOMO \rightarrow LUMO	0.5211
				HOMO - $1 \rightarrow$ LUMO	0.4770
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	2.5938 eV 478.00 nm	0.7752	HOMO - $1 \rightarrow$ LUMO	0.5197
				HOMO \rightarrow LUMO	0.4791
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	2.8954 eV 428.21 nm	0.0008	HOMO -2 \rightarrow LUMO	0.7044
5b	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	2.0450 eV 606.28 nm	0.3906	HOMO \rightarrow LUMO	0.6334
				HOMO - $1 \rightarrow$ LUMO	0.3196
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	2.3642 eV 524.43 nm	0.6487	HOMO - $1 \rightarrow$ LUMO	0.6293
				HOMO \rightarrow LUMO	0.3231
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	2.3733 eV 522.40 nm	0.0165	HOMO -2 \rightarrow LUMO	0.7044
6	$\mathrm{S} 0 \rightarrow \mathrm{~S} 1$	2.3550 eV 526.47 nm	1.3813	HOMO \rightarrow LUMO	0.7048
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 2$	2.7635 eV 448.65 nm	0.0136	HOMO - $1 \rightarrow$ LUMO	0.7008
	$\mathrm{S} 0 \rightarrow \mathrm{~S} 3$	2.9071 eV 426.49 nm	0.0121	HOMO - $2 \rightarrow$ LUMO	0.7032

[a] Only the selected low-lying excited states are presented. [b] Oscillator strength. [c] Only the main configurations are presented. [d] The CI coefficients are in absolute values.

Table S5. DFT optimized coordinates for BODIPY 1c, 5a, 5b and 6.
Compound 1c

B	-3.11783200	0.00333200	0.02600800
C	-2.55387500	2.53514800	-0.03174400
C	-1.42551200	3.37944400	-0.03878000
C	-0.30836500	2.55296400	-0.02331100
C	-0.77791800	1.21373400	-0.00801900
C	-0.07600800	-0.00014900	-0.00275200
C	-0.78068300	-1.21244500	-0.00751600
C	-0.31424200	-2.55276600	-0.02217900
C	-1.43330200	-3.37666300	-0.03731200
C	-2.55970600	-2.52975800	-0.03068200
C	1.42032700	-0.00159800	0.00137600
C	2.11518600	-0.00411600	1.22923700
C	3.51373100	-0.00908300	1.20748100
C	4.23693800	-0.00870100	0.01084300
C	3.52176900	-0.01027100	-1.19059700
C	2.12335400	-0.00530800	-1.22182800
C	1.38137700	-0.00564800	2.55201400
C	5.74758400	0.01761200	0.01591000
C	1.39883800	-0.00800900	-2.54974800
F	-3.86242500	0.00440400	1.20147400
F	-3.96064500	0.00410200	-1.07982800
N	-2.17423900	1.24622000	-0.01307300
N	-2.17708000	-1.24170100	-0.01259600
H	-1.44656400	4.46029700	-0.05487600
H	0.73219300	2.84693200	-0.02545600
H	0.72562000	-2.84922200	-0.02414100
H	-1.45682700	-4.45747300	-0.05292100
H	-3.60876500	-2.79506100	-0.03793600
H	4.05068800	-0.01471900	2.15372700
H	4.06509300	-0.01686100	-2.13319600
H	2.08776500	-0.00634000	3.38691300
H	0.73681200	-0.88638700	2.65535100
H	0.73686500	0.87493400	2.65689500
H	6.15947500	-0.47619400	-0.87031800
H	6.15351600	-0.47732100	0.90426500
H	6.12416100	1.04914500	0.01785400
H	0.75511100	-0.88886800	-2.65698900
H	2.11114200	-0.00936600	-3.37959900
H	0.75510900	0.87247400	-2.66000500
H	-3.60232500	2.80287300	-0.03909900

Compound 5a

C	-1.25871113	1.82832048	-0.11993197
C	-0.03017072	-0.26111966	0.04402414
C	-1.24712192	0.42138956	-0.01552071
C	-2.33433482	2.73068904	-0.30137463
C	-1.78630302	4.00829073	-0.40992394
C	-0.39387286	3.86318869	-0.28729549
N	1.18592087	0.44175904	0.01818799
N	-0.07504532	2.56485695	-0.11555158
B	1.32832745	1.97875280	0.20456552
F	2.28870896	2.48629280	-0.66868996
C	0.22230186	-1.67273884	0.06671383
C	1.59840225	-1.79481038	0.04457831
C	2.16544133	-0.48456516	0.01070467
F	1.68004295	2.27096030	1.52331316
H	-0.53805248	-2.43995488	0.07894686
H	-3.37779074	2.45267837	-0.35858958
H	-2.31363674	4.93931483	-0.56636480
H	0.37768124	4.62123884	-0.31276179
C	-2.53964957	-0.33315347	-0.00237666
C	-3.10104886	-0.79131678	-1.21266689
C	-3.19113861	-0.57596623	1.22578922
C	-4.31419113	-1.48768805	-1.16948176
C	-4.40115861	-1.27714773	1.21758206
C	-4.98257361	-1.73873783	0.03231480
H	-4.74632712	-1.84252768	-2.10282802
H	-4.90117346	-1.46755430	2.16505802
C	-2.42016498	-0.54784493	-2.54146507
H	-2.26248119	0.52142759	-2.72383596
H	-1.43489026	-1.02666655	-2.58336423
H	-3.02205169	-0.94470832	-3.36394350
C	-2.60424576	-0.10023941	2.53619680
H	-1.61121015	-0.52991173	2.71294798
H	-2.48613827	0.98946802	2.55268067
H	-3.24749780	-0.38228406	3.37463178
C	-6.30694766	-2.46591851	0.05014356
H	-7.14649170	-1.75835789	0.02876233
H	-6.41411441	-3.12429144	-0.81798269
H	-6.41856511	-3.07165071	0.95571826
C	3.58893824	-0.60926668	-0.02399435
C	4.66508189	0.29049036	-0.08839388
C	3.83401991	-2.02164970	-0.00176585
C	5.95841099	-0.21719300	-0.11247217
H	4.47275734	1.35721685	-0.13167112
C	5.13623701	-2.52387740	-0.02705725

C	6.18593160	-1.60745255	-0.07924221
H	6.80443232	0.46159662	-0.16197835
H	5.32536577	-3.59294603	-0.00926297
H	7.20672271	-1.97896255	-0.09981217
N	2.62866220	-2.71552484	0.03943326
H	2.53750228	-3.71990022	0.04421794

Compound 5b

C
C
C
C
C
C
N
N
B
F
C
C
C
F
H
H
C
C
C
C
C
C
H
H
C
H
H
H
C
H
H
H
C
H
H
H
$\begin{array}{lll}-0.76339082 & 1.20903079 & 0.04207435\end{array}$
-0.74142308 -1.22218160 0.04185521
$-1.45461452-0.01291422 \quad 0.04274172$
$-1.27855709 \quad 2.54003165-0.05661241$
$-0.16204081 \quad 3.35939535-0.08711511$
$\begin{array}{llll}0.99958474 & 2.53968882 & -0.00624558\end{array}$
$0.66007117-1.22682842 \quad 0.07666897$
0.637803341 .238995260 .07701957
$\begin{array}{lll}1.52821869 & 0.01397963 & 0.40926348\end{array}$
$2.69098966 \quad 0.02457999-0.36819465$
$-1.23245288-2.56226468$-0.05703743
$-0.10131916-3.36130442-0.08775165$
$1.04527196-2.52074294-0.00691247$
$\begin{array}{lll}1.86787388 & 0.01681336 & 1.76460823\end{array}$
$-2.27457184-2.84099368-0.11406377$
$-2.32554866 \quad 2.79982586-0.11371734$
$-2.95155188 \quad-0.02652404 \quad 0.00702236$
-3.62826456 -0.03320270 -1.23103637
$-3.67739988-0.038182711 .21711821$
$-5.02738929-0.05043475-1.23310008$
$-5.07508955-0.055384371 .16423577$
$-5.77057021-0.05824166-0.04886764$
$-5.54876456-0.05939734-2.18815110$
$-5.63383907-0.06825071 \quad 2.09788909$
$-2.87384543-0.02659105-2.54218508$
$-2.23541829 \quad 0.85967754-2.63478785$
$-2.21930101-0.90102769-2.63488332$
$-3.56678986-0.03279036-3.38851602$
$-2.97371295 \quad-0.03660056 \quad 2.55606976$
$-2.32447967-0.91243602 \quad 2.67104994$
$\begin{array}{llll}-2.33721692 & 0.84797157 & 2.67512735\end{array}$
$-3.69791018 \quad-0.04371002 \quad 3.37579466$
$-7.28130807-0.04508632-0.07852826$
$-7.66801636 \quad 0.98270019-0.06727432$
$-7.66824412-0.52712768 \quad-0.98236431$
$-7.70340123-0.55900311 \quad 0.79147163$

C	2.21350593	-3.34358760	-0.05014103
C	3.59836096	-3.11097415	-0.03427750
C	1.71427884	-4.68461528	-0.15090388
C	4.46005214	-4.19957687	-0.10129706
H	3.97167889	-2.09366942	0.01614505
C	2.58632176	-5.77267226	-0.21801258
C	3.95610767	-5.51248047	-0.18913007
H	5.53405211	-4.03932616	-0.09030031
H	2.20979434	-6.78864660	-0.29214225
H	4.65090393	-6.34626997	-0.24057001
N	0.32353846	-4.67429554	-0.17068270
H	-0.26115666	-5.49062920	-0.26350213
C	2.15278311	3.38352486	-0.04910333
C	3.54166880	3.17621070	-0.03282527
C	1.62933183	4.71529785	-0.14984130
C	4.38340386	4.28034171	-0.09951977
H	3.93361614	2.16594328	0.01775247
C	2.48141589	5.81902655	-0.21667369
C	3.85569224	5.58387182	-0.18745931
H	5.46013727	4.13964103	-0.08821294
H	2.08644370	6.82794907	-0.29077698
H	4.53519430	6.43018124	-0.23868406
N	0.23902664	4.67986047	-0.16992702
H	-0.36020221	5.48568267	-0.26211817

Compound 6

C	1.21368000	0.30668500	0.10494200
C	0.00047800	1.00878600	0.09886100
C	-1.21381400	0.30856700	0.10439900
N	1.22470200	-1.11038200	0.15360100
N	-1.22708800	-1.10847200	0.15335700
B	-0.00192200	-2.00377200	0.45501100
F	-0.00270800	-3.13386100	-0.36740400
F	-0.00235600	-2.40456300	1.79383400
C	-5.67361500	-3.14161400	-0.19328300
C	-4.58009900	-2.28805700	-0.10935100
C	-4.72069800	-0.86726900	-0.16119000
C	-5.99911800	-0.31767300	-0.29777500
C	-7.10154500	-1.17088600	-0.38139300
C	-6.93992800	-2.56323200	-0.33058900
H	-5.54999700	-4.21984000	-0.15401400
H	-6.13137400	0.75985800	-0.33911900
H	-8.09753000	-0.75071600	-0.48771700
H	-7.81139600	-3.20813900	-0.39833700

C	-3.37960400	-0.33005400	-0.05223700
C	-2.51622600	-1.45618100	0.05527300
N	-3.21754500	-2.61844500	0.03319000
H	-2.82965800	-3.55100000	0.03488700
C	-2.54901300	0.78818500	-0.01549900
H	-2.81789600	1.83311200	-0.08520000
C	5.66807800	-3.15048500	-0.19242400
C	4.57591300	-2.29520700	-0.10843500
C	4.71878600	-0.87462900	-0.15982000
C	5.99811300	-0.32703600	-0.29597400
C	7.09919400	-1.18198100	-0.37963000
C	6.93534100	-2.57408300	-0.32930000
H	5.54272800	-4.22852700	-0.15355800
H	6.13210000	0.75029400	-0.33697600
H	8.09587000	-0.76337000	-0.48562500
H	7.80579000	-3.22035900	-0.39709400
C	3.37851700	-0.33531100	-0.05107600
C	2.51332200	-1.46009800	0.05586300
N	3.21280100	-2.62346500	0.03368500
H	2.82343100	-3.55540000	0.03498600
C	2.54968000	0.78422700	-0.01427600
H	2.82021400	1.82874900	-0.08356700
C	0.00198500	2.50616000	0.05302100
C	0.00313500	3.17591200	-1.18863400
C	-0.00236400	3.23953000	1.25889700
C	0.00144500	4.57532500	-1.19878700
C	-0.00409500	4.63683600	1.19812600
C	0.00140500	5.32534000	-0.01908100
H	-0.00114800	5.09129000	-2.15678200
H	-0.01118000	5.20111700	2.12853100
C	0.00208600	2.41512500	-2.49614700
H	0.88190600	1.76750200	-2.58556600
H	-0.87884500	1.76900300	-2.58553500
H	0.00273800	3.10408000	-3.34574000
C	0.03147700	6.83566600	-0.05671700
H	1.06240500	7.21173700	-0.01473600
H	-0.41806400	7.22228600	-0.97719100
H	-0.50491500	7.26827900	0.79447900
C	-0.00893700	2.54440600	2.60232000
H	-0.89104800	1.90435500	2.72018200
H	0.86932400	1.90016600	2.72599500
0.00983100	3.27382100	3.41742900	
H			

10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HRMS spectra for all new compounds

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

-6.75
-6.74
-6.74
-6.73
-6.67
-6.66
-6.56
-6.55

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{c}$ in CDCl_{3}

正

N
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 I}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 o}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 o}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ in d_{6}-DMSO

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$ in d_{6}-DMSO

HRMS for 3a

HRMS for 3b

HRMS for 3c

HRMS for 3d

HRMS for 3e

HRMS for $\mathbf{3 f}$

HRMS for $\mathbf{3 g}$

HRMS for 3h

HRMS for 3i

HRMS for $\mathbf{3 j}$

HRMS for $\mathbf{3 k}$

HRMS for 31

HRMS for 3m

HRMS for 3n

00005_190620152341 \#22 RT: 0.31 AV: 1 NL: 4.55E6
T: FTMS + p ESI Full ms [100.00-1000.00]

HRMS for 30

HRMS for $\mathbf{4 a}$

HRMS for 4b

HRMS for 4c

HRMS for 4d

HRMS for $\mathbf{4 e}$

HRMS for $\mathbf{4 f}$

HRMS for $\mathbf{4 g}$

HRMS for 4h

HRMS for $\mathbf{4 i}$

HRMS for $\mathbf{4 j}$

HRMS for $\mathbf{4 k}$

HRMS for 41

HRMS for 4n

00006 \#4-34 RT: 0.04-0.50 AV: 31 NL: 9.49E3
T: FTMS + p ESI Full ms [100.00-1000.00]

HRMS for 40

HRMS for 5a

HRMS for 5b

REFERENCES

(1). Isak, S.; Eyring, E. J. Phys. Chem. 1992, 96, 1738.
(2). Killoran, J.; Allen, L.; Gallagher, J.; Gallagher, W.; O'Shea, D. F. Chem. Commun. 2002, 1862.
(3). Benson, R.; Kues, H. Phys. Med. Biol., 1978, 23, 159.
(4). a) Treat, N.; Sprafke, H.; Kramer, J.; Clark, P.; Barton, B.; Fors, B.; Hawker, C. J. Am. Chem. Soc. 2014, 136, 16096-16101. b) Tucker, J.; Stephenson, C. J. Org. Chem .2012, 77, 1617-1622.
(5). Yu, C.; Jiao, L.; Yin, H.; Zhou, J.; Pang, W.; Wu, Y.; Wang, Z.; Yang, G.; Hao, E. Eur. J. Org. Chem. 2011, 2011, 5460-5468.
(6). Schmidt, B.; Elizarov, N.; Berger, R.; Hölter. Org. Biomol. Chem. 2013, 11, 3674.
(7). Jasinska ,K.; Shan, W.; Zawada, K.; Kadish,K.; Gryko, D. J. Am. Chem. Soc. 2016, 138, 15451-15458.
(8). Silvi, M,; Verrier, C.; Rey, Y.; Buzzetti, Luca.; Melchiorre, P. Nat. Chem. 2017, 9 , 868-873.
(9). Zhou, X.; Wu, Q;;Hao, E,; Jiao, L. Chem. Asian J. 2015, 10, 1979 - 1986.
(10). (a) Luo, L.; Wu, D.; Li, W.; Zhang, S.; Ma, Y.; Yan, S.; You J. Org. Lett. 2014, 16, 6080. (b) Zhou, X.; Wu, Q.; Feng, Y.; Yu, Y.; Yu. C.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Chem. Asian J. 2015, 10, 1979.
(11). Gaussian 09, Revision D.01,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J.., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

