Supporting Information

Synthesis of (2,2-Diborylvinyl)arenes by Rhodium-Catalyzed Desulfanylative *gem*-Diborylation of 2-Arylvinyl Sulfides

Yuta Uetake,^{†,||} Motoyuki Isoda,^{†,‡} Takashi Niwa,^{*,†,‡} Takamitsu Hosoya^{*,†,‡,§}

[†]Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

[‡]Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR) 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan

[§]Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

*takashi.niwa@riken.jp, *takamitsu.hosoya@riken.jp

Present Address: Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Contents

Instrumentation and chemicals	S2–S4
Optimization study of rhodium-catalyzed 1,1-diborylation of (E)-1a	S5–S9
Examples of unsuccessful substrates (Figure S1)	S9
NMR study to observe pinacol borane (V) in the reaction mixture (Figures S2–S4)	S10–S12
An attempt to observe isomerization of (E)-1a (Scheme S1)	S13
Borylation of (E)-1a and (E)-2a with HBpin (Scheme S2)	S13
Monitoring the time-dependent changes in the contents of 1,1-diborylation (Figure 2)	S14
Synthetic procedure and characterization data	S15-S37
References for Supporting Information	S38
NMR spectra	S39–S80

Instrumentation and chemicals

All reactions were performed under argon atmosphere unless otherwise indicated. All manipulations of air- and/or moisture-sensitive compounds were performed either using standard Schlenk techniques or in a MIWA DBO-1KH-NYWS glovebox under an atmosphere of argon. Unless otherwise noted, rhodium-catalyzed 1,1-diborylation reactions were conducted in a 4 mL (15×45 mm) screw-thread clear vial (Thermo Scientific, Cat. No. C4015-1) with a cap assembled with a septum (Thermo Scientific, Cat. No. C4015-75A).

Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck, Merck Silica Gel 60 F₂₅₄). Preparative TLC (PTLC) was carried out using precoated silica-gel plates (for 0.50 mm, 1.0 mm and 2.0 mm: Merck, Merck Silica Gel 60 F₂₅₄). Column chromatography was conducted by hand using silica-gel (SiliCycle Inc., SiliaFlash) or on a YAMAZEN Automated Flash Chromatography System that consists of AI-580 and Parallel Frac FR-360 with silica-gel-packed column (Biotage Zip cartridge). Recycling preparative high-performance liquid chromatography (HPLC) was performed by LC-Forte/R (YMC Co., Ltd.) with high-resolution gel permeation chromatography (GPC) column (Japan Analytical Industry Co., Ltd., JAIGEL-1H).

Gas chromatography (GC) analysis was carried out on a Shimadzu GC-2014 using an DB-WAX (Agilent Technologies Japan, Ltd., 30 m, 0.53 mm I.D., 0.5 μ m df) column and helium as the carrier gas.

Melting points (mp) were measured with an OptiMelt automated melting point apparatus (Stanford Research Systems, Inc.) and were uncorrected.

¹H NMR (400 MHz), ¹³C NMR (100 MHz), ¹⁹F NMR (373 MHz), and ¹¹B NMR (127 MHz) spectra were obtained from measurements at ambient temperature on a JEOL 400SS spectrometer. Chloroform- d_1 (CDCl₃) containing 0.05% tetramethylsilane (TMS) (99.8%D, Cambridge Isotope Laboratories, Inc.) or toluene- d_8 (99.5%D, Cambridge Isotope Laboratories, Inc.) was used as a solvent for NMR measurements at room temperature. Chemical shifts (δ) for are given in parts per million (ppm) downfield from signal of residual CHCl₃ (δ 7.26 ppm for ¹H NMR), residual toluene (δ 2.09 ppm for ¹H NMR) or CDCl₃ (δ 77.2 ppm for ¹³C NMR) as an internal standard, or α,α,α -trifluorotoluene (δ –62.6 ppm for ¹⁹F NMR) or BF₃·OEt₂ (δ 0.00 ppm for ¹¹B NMR) as an external standard with coupling constants (*J*) in hertz (Hz). The abbreviations s, d, t, q, sept, m, and br signify singlet, doublet, triplet, quartet, septet, multiplet, and broad, respectively.

Infrared (IR) spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer with the absorption band given in cm⁻¹.

High-resolution mass spectra (HRMS) were measured on a Thermo Fisher Scientific ExactiveTM Plus Orbitrap mass spectrometer under positive electrospray ionization (ESI⁺) conditions.

4-Formylphenyl 4-methylbenzenesulfonate,^{S1} methylthio(1,5-cyclooctadiene)rhodium(I) dimer ([Rh(SMe)(cod)]₂),^{S2} (*E*)-styryl acetate (8),^{S3} (*E*)-(2-bromovinyl)benzene (10),^{S4} and (*Z*)-(2-bromovinyl)benzene^{S4} were prepared according to the reported procedure.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Tricyclohexylphosphine (PCy₃) was purchased from Frontier Scientific Inc.

Bis(pinacolato)diboron ((Bpin)₂), toluene (deoxygenated), benzene (super dehydrated), tetrahydrofuran (THF, deoxygenated), cyclopentyl methyl ether (CPME, super dehydrated), dichloromethane (CH₂Cl₂, deoxygenated), *n*-hexane (deoxygenated), 1,4-dioxane (super dehydrated), *N*,*N*-dimethylformamide (DMF, deoxygenated), acetonitrile (MeCN, super dehydrated), diethyl ether (Et₂O, super dehydrated), cyclohexane (super dehydrated), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos), 4-(methylthio)benzaldehyde, and sodium methanethiolate (NaSMe, 50%, containing water) were purchased from Wako Pure Chemical Industries, Ltd.

1,2-Dicyclohexylphosphinoethane (dcpe), cesium acetate (CsOAc), cesium carbonate (Cs₂CO₃), cesium pivalate (CsOPiv), hydroxy(1,5-cyclooctadiene)rhodium(I) dimer ([Rh(OH)(cod)]₂), methoxy(1,5-cyclooctadiene)rhodium(I) dimer ([Rh(OMe)(cod)]₂), chloro(1,5-cyclooctadiene)rhodium(I) dimer ([RhCl(cod)]₂), chlorobis(cyclooctene)rhodium(I) dimer ([RhCl(coe)₂]₂), 4-methoxybenzyl chloride, 4-methylbenzyl bromide, α,α,α -trifluorotoluene (PhCF₃), triethylphosphine (PEt₃, 1.0 M in THF), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (dtbpy), 2,6-dimethylbenzaldehyde, sodium thiophenoxide, and methyl styryl ether (7) were purchased from Sigma–Aldrich Japan Inc.

1,1,2,2-Tetrachloroethane, potassium *tert*-butoxide (*t*-BuOK), sodium *tert*-butoxide, tri(4-methoxyphenyl)phosphine (P(4-MeO-C₆H₄)₃), tri(4-fluorophenyl)phosphine (P(4-F-C₆H₄)₃), 4-(trifluoromethyl)benzyl bromide, 4-chlorobenzyl bromide, 4-bromobenzyl bromide, 4-fluorobenzyl bromide, 2-methylbenzyl bromide, 4-phenylbenzyl bromide, *N*-(4-formylphenyl)acetamide, 1-(bromomethyl)naphthalene, benzo[*b*]thiophene-2-carbaldehyde, methyl 4-formylbenzoate, methyl (methylsulfinyl)methyl sulfide (FAMSO), hexamethylphosphoric triamide (HMPA), styrene (**9**), diethyl ((methylthio)methyl)phosphonate, 1-dodecanethiol, 2-propanethiol, and pinacol borane (HBpin) were purchased from Tokyo Chemical Industry Co., Ltd.

Ethyl acetate (EtOAc), potassium carbonate (K₂CO₃), diethyl ether (Et₂O), chloroform (CHCl₃), tri(*n*-butyl)phosphine (P(*n*-Bu)₃), triphenylphosphine (PPh₃), cesium fluoride (CsF), potassium acetate (KOAc), sodium acetate (NaOAc), sodium carbonate (Na₂CO₃), ammonium chloride, triethylamine (Et₃N), *N*,*N*-diisopropylethylamine ((*i*-Pr)₂EtN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-diazabicyclo[2.2.2]octane (DABCO), *N*,*N*-dimethyl-4-aminopyridine (DMAP), *m*-chloroperoxybenzoic acid (*m*CPBA, 70%, containing water), benzyl bromide, 4-(dimethyl-

amino)benzaldehyde, 4-hydroxybenzaldehyde, sodium hydride (NaH), 1,2-bis(diphenylphosphino)ethane (dppe), sodium periodate, sodium hydrogen carbonate, sodium thiosulfate, and *n*-dodecane were purchased from Nacalai Tesque, Inc.

n-Butyllithium (1.6 M in *n*-hexane) was purchased from Kanto Chemical Co.

Optimization study of rhodium-catalyzed 1,1-diborylation of (E)-1a

General procedure for optimization study

To a capped vial equipped with a magnetic stir bar were added a rhodium source, a base, a ligand and a solvent (1.0 mL) in a glovebox filled with argon gas, and the solution was stirred for 1 h at room temperature. To the mixture were added bis(pinacolato)diboron ((Bpin)₂) (102 mg, 0.402 mmol, 2.0 equiv) as a solid and a solution of (*E*)-methyl styryl sulfide ((*E*)-**1a**, 30.0 mg, 0.200 mmol, 1 equiv) dissolved in a solvent (0.5 mL). After stirring the mixture for 24 h at room temperature, the reaction vial was taken out from the glovebox. To the reaction mixture was added saturated aqueous ammonium chloride (ca. 1 mL), and the mixture was extracted with EtOAc (ca. 1 mL × 3). The combined organic extract was dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. To the residue were added 1,1,2,2-tetrachloroethane (21.0 μ L, 0.200 mmol) and CDCl₃ (ca. 1 mL), and then ¹H NMR analysis was conducted using a portion of this solution. The yields were determined by comparison of integrated values of the signals that correspond to vinylic protons of (*E*)-**2a** (δ 6.17 ppm) and **3a** (δ 7.71 ppm) with that corresponds to two protons of 1,1,2,2-tetrachloroethane (δ 5.98 ppm).

Table S1. Optimization of ligand

(<i>E</i>)-1a	SMe $\frac{(\text{Bpin})_2}{n-\text{hexane, rt, 2}} (2 \text{ equ})_2 (2 \text{ [Rh(OH)(cod)]}_2 (2 \text{ ligand (12 mol})_2 (2 ligand (12 m$	mol %) %) */) */) */) */)	+ Bpin Bpin 3a
entry	ligand	yield of (<i>E</i>)-2a (%) ^{<i>a</i>}	yield of $3a (\%)^a$
1	$P(n-Bu)_3$	0	86 [80] ^b
2	PEt ₃ (1.0 M in THF)	0	80 [73] ^b
3	PCy ₃	0	0
4	PPh ₃	0	0
5	P(4-MeO-C ₆ H ₄) ₃	0	0
6	P(4-F-C ₆ H ₄) ₃	0	0
7^c	dppe	0	0
8 ^c	dcpe	0	0
9 ^c	Xantphos	0	0
10 ^c	dtbpy	0	0

^aDetermined by ¹H NMR analysis.

^bIsolated yield in brackets.

^c6 mol % of ligand was used.

Table S2. Optimization of rhodium source

(E)-1a	(Bpin) ₂ (2 ec [Rh] ₂ (2 mo P(<i>n</i> -Bu) ₃ (12 m K ₂ CO ₃ (12 m <i>n</i> -hexane, rt,	(%) nol %) ol %) 	+ Bpin Bpin 3a
entry	[Rh] ₂	yield of (<i>E</i>)-2a (%) ^{<i>a</i>}	yield of 3a (%) ^{<i>a</i>}
1	$[Rh(OH)(cod)]_2$	0	86 $[80]^b$
2	$[Rh(OMe)(cod)]_2$	0	88
3	[RhCl(cod)] ₂	12	0
4	$[RhCl(coe)_2]_2$	19	49
5	[Rh(SMe)(cod)] ₂	0	96

^aDetermined by ¹H NMR analysis.

Table S3. Optimization of solvent

	SMe (<i>E</i>)-1a	(Bpin) ₂ (2 [Rh(OH)(cod)] ₂ P(<i>n</i> -Bu) ₃ (12 K ₂ CO ₃ (12 solvent, r	2 (2 mol %) 2 mol %) mol %)	Bpin + Bpin 3a
-	entry	solvent	yield of (E) -2a $(\%)^a$	yield of 3a (%) ^{a}
_	1	<i>n</i> -hexane	0	86 $[80]^b$
	2	cyclohexane	0	65
	3	benzene	9	83
	4	toluene	6	84
	5	PhCF ₃	17	73
	6	CH_2Cl_2	0	0
	7	Et ₂ O	0	72
	8	CPME	41	48
	9	1,4-dioxane	17	79
	10	THF	16	70
	11	MeCN	64	11
	12	DMF	21	0

^aDetermined by ¹H NMR analysis.

Table S4. Optimization of base

Í	SMe	(Bpin) ₂ (2 [Rh(OH)(cod)] P(<i>n</i> -Bu) ₃ (1 base (12	₂ (2 mol %) 2 mol %)		Bpin + Bpin
ر ر	(<i>E</i>)-1a	<i>n</i> -hexane,	rt, 24 h	(<i>E</i>)-2a	Bpin 3a
	entry	base	yield o	of (E)-2a (%) ^a	yield of 3a (%) ^{<i>a</i>}
	1	CsF		21	12
	2	NaOAc		61	14
	3	KOAc		8	0
	4	CsOAc		38	24
	5	CsOPiv		49	7
	6	Na ₂ CO ₃		43	0
	7	K ₂ CO ₃		0	86 [80] ^{b}
	8	Cs ₂ CO ₃		0	83
	9	t-BuOK		0	0
	10	Et ₃ N		2	71
	11	(<i>i</i> -Pr) ₂ EtN		2	66
	12	DBU		2	65
	13	DABCO		0	64
-	14	DMAP		1	70

^aDetermined by ¹H NMR analysis.

Table S5. Optimization of the amount of K₂CO₃

SMe (<i>E</i>)-1a	(Bpin) ₂ (2 [Rh(OH)(cod)] ₂ P(<i>n</i> -Bu) ₃ (12 K ₂ CO ₃ (x r <i>n</i> -hexane,	2 (2 mol %) 2 mol %) mol %)	Bpin + Bpin 3a
entry	x (mol %)	yield of (<i>E</i>)-2a (%) ^{<i>a</i>}	yield of 3a (%) ^{<i>a</i>}
1	100	41	50
2	75	33	63
3	50	11	70
4	25	0	81
5	12	0	86 [80] ^{b}
6	8	0	72
7	4	4	70
8	none	0	0
	1		

^aDetermined by ¹H NMR analysis.

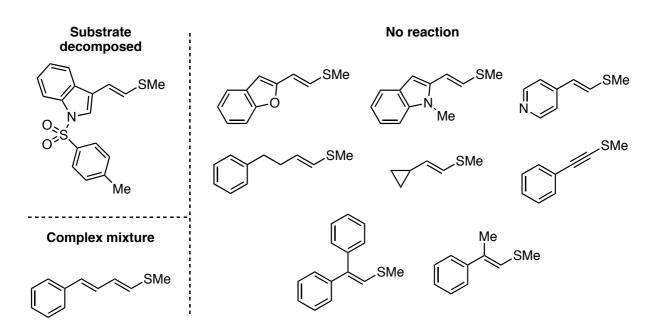


Figure S1. Examples of unsuccessful substrates.

NMR study to observe pinacol borane (V) in the reaction mixture (Figures S2–S4)

To a capped vial equipped with a magnetic stir bar were added $[Rh(OH)(cod)]_2$ (1.8 mg, 3.9 µmol, 2 mol %), K₂CO₃ (3.4 mg, 25 µmol, 12 mol %), P(*n*-Bu)₃ (5.9 µL, 24 µmol, 12 mol %), and toluene-*d*₈ (1.0 mL) in a glovebox filled with argon gas, and the solution was stirred for 1 h at room temperature. To the mixture were added bis(pinacolato)diboron ((Bpin)₂) (102 mg, 0.402 mmol, 2.0 equiv) as a solid and a solution of (*E*)-methyl styryl sulfide ((*E*)-**1a**, 30.0 mg, 0.200 mmol, 1 equiv) dissolved in toluene-*d*₈ (0.5 mL). After stirring the mixture for 6 h at 80 °C, the resulting solution was cooled to room temperature and transferred into an NMR tube in glovebox.

¹H NMR spectrum (δ –0.5 to 10.5 ppm) obtained from the analysis of the mixture at room temperature is shown in Figure S2. The broad quartet signal observed at δ 4.13 ($J_{\text{H-B}} = 171$ Hz) indicated the presence of pinacol borane (**V**) and the signals observed at δ 8.02 (s, 1H) and δ 6.31 (d, $J_{\text{H-H}} = 18.6$ Hz, 1H) indicated the presence of **3a** and (*E*)-**2a**, respectively. The ratio of the integral value for **3a** and **V** was approximately 1:1, indicating that almost the same amounts of **3a** and **V** were generated. ¹H NMR measurement at –70 °C showed a quartet-shaped signal at δ –10.9 ppm (Figure S3). This signal indicated the presence of a rhodium hydride species such as **IV**, although it was difficult to characterize the valency of the rhodium center or other ligand in this complex. ¹¹B NMR measurement at room temperature also showed the generation of the products. The doublet signal observed at δ 33.0 ppm corresponded to **3a**, respectively (Figure S4). Assignments of these signals were performed by comparison of these spectra to each spectrum separately measured using the isolated compounds.

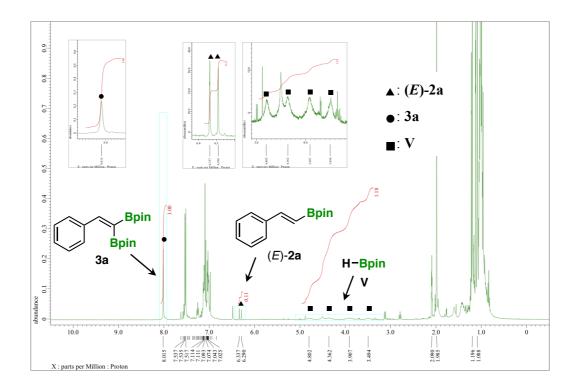


Figure S2. ¹H NMR spectrum (δ –0.5 to 10.5 ppm) of the reaction mixture measured in toluene- d_8 at room temperature.

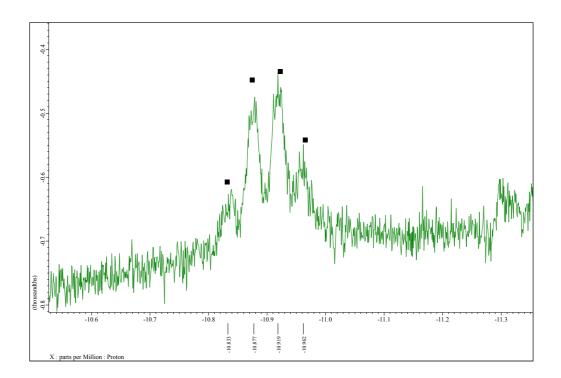


Figure S3. ¹H NMR spectrum (δ –11.4 to –10.7 ppm) of the reaction mixture measured in toluene-*d*₈ at –70 °C.

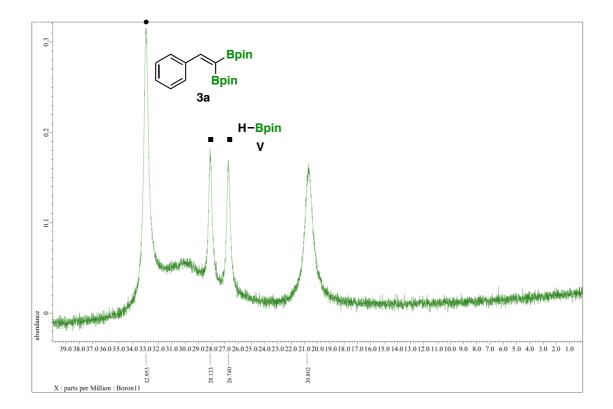
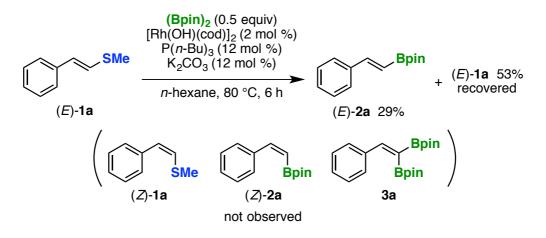
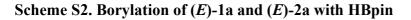
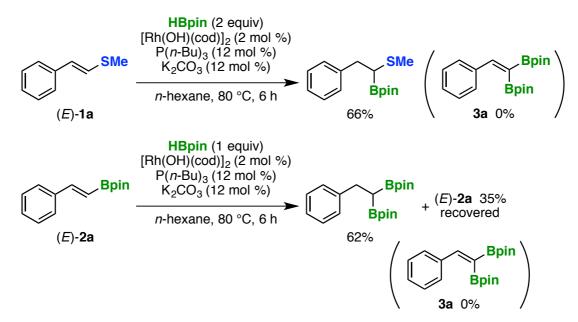
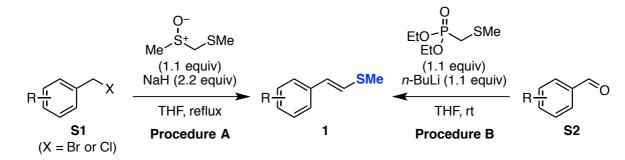





Figure S4. ¹¹B NMR spectrum of the reaction mixture measured in toluene-*d*₈ at room temperature.

Scheme S1. An attempt to observe isomerization of (E)-1a

Monitoring the time-dependent changes in the contents of 1,1-diborylation of (*E*)-1a by GC analysis (Figure 2A)


To a capped vial equipped with a magnetic stir bar were added $[Rh(OH)(cod)]_2$ (1.8 mg, 3.9 µmol, 2 mol %), P(*n*-Bu)₃ (5.9 µL, 36 µmol, 12 mol %) and toluene (1.0 mL) in a glovebox filled with argon gas, and the mixture was stirred for 1 h at room temperature. To the mixture were added bis(pinacolato)diboron ((Bpin)₂) (102 mg, 0.402 mmol, 2.0 equiv) as a solid, a solution of (*E*)-**1a** (30.0 mg, 0.200 mmol, 1 equiv) in toluene (0.5 mL), and *n*-dodecane (45.5 µL, 0.200 mmol) as an internal standard. The reaction vial was heated at 80 °C. Portions (ca. 10 µL) of this mixture were collected every 15 min, to each of which were added EtOAc (ca. 1 mL) and saturated aqueous ammonium chloride (ca. 1 mL) immediately. After stirring the mixture vigorously, GC analysis was conducted using a portion of the resulting organic phase to evaluate the amount of the products (*E*)-**2a** and **3a** along with the remaining (*E*)-**1a**.

Monitoring the time-dependent changes in the contents of 1,1-diborylation of (E)-1a conducted in the presence of pinacol borane by GC analysis (Figure 2B)

To a capped vial equipped with a magnetic stir bar were added $[Rh(OH)(cod)]_2$ (1.8 mg, 3.9 µmol, 2 mol %), P(*n*-Bu)₃ (5.9 µL, 36 µmol, 12 mol %) and toluene (1.0 mL) in a glovebox filled with argon gas, and the mixture was stirred for 1 h at room temperature. To the mixture were added bis(pinacolato)diboron ((Bpin)₂) (102 mg, 0.402 mmol, 2.0 equiv) as a solid, a solution of (*E*)-**1a** (30.0 mg, 0.200 mmol, 1 equiv) in toluene (0.5 mL), pinacol borane (2.9 µL, 20 µmol, 10 mol %), and *n*-dodecane (45.5 µL, 0.200 mmol) as an internal standard. The reaction vial was heated at 80 °C. Portions (ca. 10 µL) of this mixture were collected every 15 min, to each of which were added EtOAc (ca. 1 mL) and saturated aqueous ammonium chloride (ca. 1 mL) immediately. After stirring the mixture vigorously, GC analysis was conducted using a portion of the resulting organic phase to evaluate the amount of the products (*E*)-**2a** and **3a** along with the remaining (*E*)-**1a**.

GC conditions for analyses of the products: Constant linear column flow was adjusted to 30 cm/sec. Temperatures of the injector and the detector were held at 300 °C, and the GC oven temperature program was set as follows: initially held at 75 °C for 4 min, heated to 220 °C at the rate of 15 °C/min, and held at 220 °C for 11 min. Retention times: *n*-dodecane (8.6 min, internal standard), (Bpin)₂ (12.2 min), (*E*)-1a (*E*-isomer: 13.4 min, *Z*-isomer: 13.8 min), (*E*)-2a (15.1 min), and 3a (22.5 min).

Synthetic procedures and characterization data

General procedures for preparation of styryl sulfides 1

Procedure A

Preparations of **1** from benzyl bromide or chloride derivatives **S1** and FAMSO were conducted according to the reported procedure with a minor modification.^{S5}

To a round-bottom flask equipped with a magnetic stir bar and charged with NaH (60% purity in mineral oil, 2.2 equiv) and THF (0.44 mol/L for **S1**) was added FAMSO (1.1 equiv) at 0 °C via syringe, and then warmed up to room temperature. After stirring for 30 min at the same temperature, to the mixture was added **S1** (1 equiv) at room temperature and refluxed for 16 h. After cooling to room temperature, the reaction mixture was poured into ice water and extracted with EtOAc. The combined organic extract was washed with brine and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography to give the corresponding styryl sulfide **1**.

Procedure B

Preparations of **1** from benzaldehyde derivatives **S2** and diethyl ((methylthio)methyl)phosphonate were conducted according to the reported procedure with a minor modification.^{S6}

To a round-bottom flask equipped with a magnetic stir bar and charged with diethyl ((methylthio)methyl)phosphonate (1.1 equiv) and THF (0.5 mol/L for **S2**) was added *n*-butyllithium (1.1 equiv) at 0 °C via a syringe. After stirring for 30 min at the same temperature, to the mixture was added **S2** (1 equiv) and then warmed up to room temperature. After stirring for 16 h at the same temperature, to the mixture was added saturated aqueous ammonium chloride and extracted with EtOAc. The combined organic extract was washed with brine and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography to give the corresponding styryl sulfide **1**.

(E)-Methyl styryl sulfide ((E)-1a)

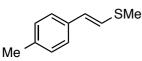
Prepared from benzyl bromide (1.71 g, 9.94 mmol) by Procedure A. Eluent for column chromatographic purification: *n*-hexane/EtOAc = 49/1; Yield: 43.7% (652 mg, 4.34 mmol); Yellow oil; TLC $R_f = 0.72$ (*n*-hexane/EtOAc = 9/1); ¹H NMR (CDCl₃) δ 2.39 (s, 3H), 6.31 (d, *J* = 15.4 Hz, 1H), 6.79 (d, *J* = 15.4 Hz, 1H), 7.16–7.21 (AA'BB'C, 1H), 7.29–7.30 (AA'BB'C, 4H); ¹³C NMR (CDCl₃) δ 15.0 (1C), 124.9 (1C), 125.6 (2C), 126.0 (1C), 126.8 (1C), 128.8 (2C), 137.3 (1C); The chemical shifts were consistent with those reported in the literature.^{S7}

(*E*/*Z*)-Methyl styryl sulfide (*E*/*Z*-mixture of 1a)

An E/Z-mixture of **1a** was prepared by mixing (*E*)-**1a** and (*Z*)-**1a** in the ratio of 1:1. A procedure for the preparation of (*Z*)-**1a** is shown below.

(Z)-Methyl styryl sulfide ((Z)-1a)

ŚMe


Preparations of (Z)-1a was conducted according to the reported procedure with a minor modification.^{S8}

To a 100 mL round-bottom flask equipped with a magnetic stir bar and charged with NaSMe (50%, 1.16 g, 8.28 mmol, 1.5 equiv) in HMPA (10 mL) was added (*Z*)-(2-bromovinyl)benzene (1.01 g, 5.52 mmol, 1 equiv) in HMPA (5 mL) at room temperature. After stirring for 12 h at the same temperature, to the reaction mixture was added water (ca. 20 mL) and extracted with Et₂O (ca. 10 mL × 3). The combined organic extract was washed with brine (ca. 20 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane) to give (*Z*)-**1a** (708 mg, 4.71 mmol, 85.4%, *Z*/*E* = >25:1) as a colorless oil; TLC $R_{\rm f} = 0.72$ (*n*-hexane/EtOAc = 10/1);

¹H NMR (CDCl₃) δ 2.41 (s, 3H), 6.22 (d, *J* = 10.9 Hz, 1H), 6.44 (d, *J* = 10.9 Hz, 1H), 7.19–7.24 (AA'BB'C, 1H), 7.33–7.39 (AA'BB'C, 2H), 7.45–7.49 (AA'BB'C, 2H);

¹³C NMR (CDCl₃) δ 19.1 (1C), 125.5 (1C), 126.8 (1C), 128.4 (2C), 128.8 (2C), 129.2 (1C), 137.1 (1C); The chemical shifts were consistent with those reported in the literature.⁸⁸

Methyl 4-methylstyryl sulfide (1b, E/Z = 7.8:1)

Prepared from 4-methylbenzyl bromide (1.85 g, 10.0 mmol) by Procedure A.

Eluent for column chromatographic purification: *n*-hexane/EtOAc = 49/1;

Yield: 36.0% (591 mg, 3.60 mmol, *E*/*Z* = 7.8:1);

Colorless oil;

TLC $R_{\rm f} = 0.62$ (*n*-hexane/EtOAc = 9/1);

for *E*-isomer:

¹H NMR (CDCl₃) δ 2.31 (s, 3H), 2.36 (s, 3H), 6.29 (d, *J* =15.4 Hz, 1H), 6.71 (d, *J* = 15.4 Hz, 1H), 7.07–7.10 (AA'BB', 2H), 7.17–7.19 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 15.0 (1C), 21.3 (1C), 124.7 (1C), 125.0 (1C), 125.5 (2C), 129.5 (2C), 134.5 (1C), 136.6 (1C);

for *Z*-isomer:

¹H NMR (CDCl₃) δ 2.33 (s, 3H), 2.38 (s, 3H), 6.13 (d, *J* = 10.6 Hz, 1H), 6.40 (d, *J* = 10.6 Hz, 1H), 7.14–7.16 (AA'BB', 2H), 7.35–7.37 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 19.0 (1C), 21.4 (1C), 126.5 (1C), 127.8 (1C), 128.0 (1C), 128.7 (2C), 129.1 (2C), 134.3 (1C);

The chemical shifts were consistent with those reported in the literature.^{S9}

(E)-2-(Biphenyl-4-yl)ethenyl methyl sulfide (1c)

Prepared from 4-phenylbenzyl bromide (2.47 g, 9.99 mmol) by Procedure A.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

Yield: 29.4% (666 mg, 2.94 mmol);

Colorless solid;

mp: 155–156 °C;

TLC $R_{\rm f} = 0.45$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 2.41 (s, 3H), 6.35 (d, *J* = 15.4 Hz, 1H), 6.84 (d, *J* = 15.4 Hz, 1H), 7.31–7.38 (m, 3H), 7.41–7.45 (AA'BB', 2H), 7.52–7.56 (AA'BB', 2H), 7.58–7.62 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 15.1 (1C), 124.4 (1C), 126.0 (2C), 126.1 (1C), 127.0 (2C), 127.4 (1C), 127.5 (2C), 129.0 (2C), 136.4 (1C), 139.5 (1C), 140.9 (1C);

IR (ZnSe, cm⁻¹) 688, 756, 931, 1487, 1591, 2317, 3026; HRMS (ESI⁺) *m*/*z* 227.0883 (227.0889 calcd for C₁₅H₁₅S⁺, [M+H]⁺).

4-Fluorostyryl methyl sulfide (1d, E/Z = 6.5:1)

Prepared from 4-fluorobenzyl bromide (1.89 g, 10.0 mmol) by Procedure A.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

Yield: 51.5% (866 mg, 5.15 mmol, E/Z = 6.5:1);

Colorless oil;

TLC $R_{\rm f} = 0.51$ (*n*-hexane/EtOAc = 9/1);

For *E*-isomer:

¹H NMR (CDCl₃) δ 2.37 (s, 3H), 6.27 (d, *J* = 15.4 Hz, 1H), 6.69 (d, *J* = 15.4 Hz, 1H), 6.94–7.01 (AA'BB'X, 2H), 7.23–7.27 (AA'BB'X, 2H);

¹³C NMR (CDCl₃) δ 15.0 (1C), 115.7 (d, ²*J*_{C-F} = 21.0 Hz, 2C), 123.8 (1C), 125.7 (d, ⁵*J*_{C-F} = 1.9 Hz, 1C), 126.9 (d, ³*J*_{C-F} = 7.6 Hz, 2C), 133.5 (d, ⁴*J*_{C-F} = 2.9 Hz, 1C), 161.9 (d, ¹*J*_{C-F} = 246.1 Hz, 1C); ¹⁹F NMR (CDCl₃) δ –115.6 (m);

For Z-isomer:

¹H NMR (CDCl₃) δ 2.40 (s, 3H), 6.18 (d, *J* = 10.6 Hz, 1H), 6.39 (d, *J* = 10.6 Hz, 1H), 7.01–7.06 (AA'BB'X, 2H), 7.42–7.46 (AA'BB'X, 2H);

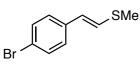
¹³C NMR (CDCl₃) δ 18.9 (1C), 115.2 (d, ${}^{2}J_{C-F} = 21.9$ Hz, 2C), 124.3 (1C), 128.6 (d, ${}^{5}J_{C-F} = 1.9$ Hz, 1C), 130.4 (d, ${}^{3}J_{C-F} = 8.6$ Hz, 2C), 133.3 (d, ${}^{4}J_{C-F} = 2.9$ Hz, 1C), 161.5 (d, ${}^{1}J_{C-F} = 247.0$ Hz, 1C); ¹⁹F NMR (CDCl₃) δ –114.7 (m);

IR (ZnSe, cm⁻¹) 835, 925, 1224, 1503, 1581, 1601, 3036;

HRMS (ESI⁺) *m*/*z* 169.0480 (169.0482 calcd for C₉H₁₀FS⁺, [M+H]⁺).

(E)-4-Chlorostyryl methyl sulfide (1e)

Prepared from 4-chlorobenzyl bromide (2.05 g, 9.97 mmol) by Procedure A.


Eluent for column chromatographic purification: n-hexane/EtOAc = 50/1;

Yield: 33.6% (619 mg, 3.35 mmol);

Colorless solid;

mp: 55–56 °C; TLC $R_f = 0.51$ (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃) δ 2.38 (s, 3H), 6.24 (d, J = 15.4 Hz, 1H), 6.78 (d, J = 15.4 Hz, 1H), 7.19–7.22 (AA'BB', 2H), 7.24–7.27 (AA'BB', 2H); ¹³C NMR (CDCl₃) δ 15.0 (1C), 123.5 (1C), 126.7 (2C), 126.9 (1C), 129.0 (2C), 132.3 (1C), 135.8 (1C); IR (ZnSe, cm⁻¹) 783, 930, 1088, 1487, 1557, 1593, 2914; HRMS (ESI⁺) m/z 185.0182 (185.0186 calcd C₉H₁₀³⁵ClS⁺, [M+H]⁺).

(E)-4-Bromostyryl methyl sulfide (1f)

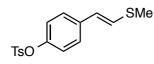
Prepared from 4-bromobenzyl bromide (1.85 g, 7.40 mmol) by Procedure A.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

Yield: 75.5% (1.28 g, 5.59 mmol);

Colorless solid;

mp: 72–73 °C;


TLC $R_{\rm f} = 0.51$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 2.38 (s, 3H), 6.22 (d, *J* = 15.4 Hz, 1H), 6.80 (d, *J* = 15.4 Hz, 1H), 7.13-7.17 (AA'BB', 2H), 7.39–7.42 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 14.9 (1C), 120.4 (1C), 123.4 (1C), 127.0 (2C), 127.1 (1C), 131.9 (2C), 136.2 (1C); IR (ZnSe, cm⁻¹) 832, 930, 1487, 1593, 3015, 3744;

HRMS (ESI⁺) m/z 228.9677 (228.9681 calcd for C₉H₁₀⁷⁹BrS⁺, [M+H]⁺).

(2-(Methylthio)vinyl)phenyl 4-methylbenzenesulfonate (1g, E/Z = 18:1)

Prepared from 4-formylphenyl 4-methylbenzenesulfonate (2.76 g, 9.99 mmol) by Procedure B. Purified by recrystallization from *n*-hexane/EtOAc = 9/1; Yield: 40.6% (1.30 g, 4.06 mmol, E/Z = 18:1); Colorless solid; mp: 88–89 °C; TLC $R_f = 0.16$ (*n*-hexane/EtOAc = 9/1);

For *E*-isomer:

¹H NMR (CDCl₃) δ 2.37 (s, 3H), 2.45 (s, 3H), 6.22 (d, J = 15.4 Hz, 1H), 6.75 (d, J = 15.4 Hz, 1H), 6.87–6.91 (AA' BB' , 2H), 7.16–7.20 (AA' BB' , 2H), 7.29–7.31 (AA' BB' , 2H), 7.68–7.71 (AA' BB' , 2H);

¹³C NMR (CDCl₃) δ 14.9 (1C), 21.9 (1C), 122.8 (2C), 123.2 (1C), 126.4 (2C), 127.4 (1C), 128.7 (2C), 129.9 (2C), 132.5 (1C), 136.3 (1C), 145.5 (1C), 148.2 (1C);

IR (ZnSe, cm⁻¹) 814, 845, 1175, 1366, 1596, 1748, 2311, 3746;

HRMS (ESI⁺) *m*/*z* 343.0430 (343.0433 calcd for C₁₆H₁₆NaO₃S₂⁺, [M+Na]⁺).

(E)-Methyl 4-(methylthio)styryl sulfide (1h)

MeS SMe

Prepared from 4-(methylthio)benzaldehyde (1.52 g, 9.99 mmol) by Procedure B.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

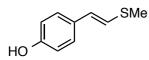
Yield: 13.9% (273 mg, 1.39 mmol);

Pale yellow solid;

mp: 102–103 °C;

TLC $R_{\rm f} = 0.54$ (*n*-hexane/EtOAc = 4/1);

¹H NMR (CDCl₃) δ 2.38 (s, 3H), 2.47 (s, 3H), 6.26 (d, J = 15.4 Hz, 1H), 6.74 (d, J = 15.4 Hz, 1H),


7.17-7.23 (AA'BB', 2H+2H, two signals overlapped);

¹³C NMR (CDCl₃) δ 15.1 (1C), 16.2 (1C), 124.3 (1C), 125.4 (1C), 126.0 (2C), 127.1 (2C), 134.4 (1C), 136.8 (1C);

IR (ZnSe, cm⁻¹) 783, 928, 1314, 1489, 1589, 2313, 2913;

HRMS (ESI⁺) m/z 197.0450 (197.0453 calcd for C₁₀H₁₃S₂⁺, [M+H]⁺).

(E)-4-(2-(Methylthio)vinyl)phenol (1i)

Prepared from 4-hydroxybenzaldehyde (611 mg, 5.00 mmol) by Procedure B.

Purified by recrystallization: n-hexane/EtOAc = 9/1;

Yield: 16.1% (134 mg, 0.806 mmol);

Colorless solid;

mp: 125–126 °C;

TLC $R_{\rm f} = 0.51$ (*n*-hexane/EtOAc = 1/1);

¹H NMR (CDCl₃) δ 2.36 (s, 3H), 4.85 (s, 1H), 6.28 (d, *J* = 15.4 Hz, 1H), 6.60 (d, *J* = 15.4 Hz, 1H), 6.75–6.78 (AA'BB', 2H), 7.17–7.19 (AA'BB', 2H); ¹³C NMR (CDCl₃) δ 15.3 (1C), 115.7 (2C), 123.5 (1C), 124.9 (1C), 126.9 (2C), 130.4 (1C), 154.6 (1C); IR (ZnSe, cm⁻¹) 789, 835, 925, 1240, 1508, 1579, 1598, 3394; HRMS (ESI⁺) *m/z* 167.0524 (167.0525 calcd for C₉H₁₁OS⁺, [M+H]⁺).

(E)-4-Methoxystyryl methyl sulfide (1j)

leO SMe

Prepared from 4-methoxybenzyl chloride (1.56 g, 9.96 mmol) by Procedure A.

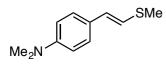
Eluent for column chromatographic purification: *n*-hexane/EtOAc = 49/1;

Yield: 40.8% (731 mg, 4.06 mmol);

Pale yellow solid;

mp: 70–71 °C;

TLC $R_{\rm f} = 0.72$ (*n*-hexane/EtOAc = 9/1);


¹H NMR (CDCl₃) δ 2.37 (s, 3H), 3.80 (s, 3H), 6.29 (d, *J* = 15.4 Hz, 1H), 6.61 (d, *J* = 15.4 Hz, 1H), 6.82–6.86 (AA'BB', 2H), 7.21–7.25 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 15.2 (1C), 55.5 (1C), 114.3 (2C), 123.4 (1C), 125.0 (1C), 126.7 (2C), 130.3 (1C), 158.6 (1C);

IR (ZnSe, cm⁻¹) 785, 837, 928, 1032, 1256, 1510, 1593, 2999;

HRMS (ESI⁺) *m*/*z* 181.0679 (181.0682 calcd for C₁₀H₁₃OS⁺, [M+H]⁺).

(*E*)-*N*,*N*-Dimethyl-4-(2-(methylthio)vinyl)aniline (1k)

Prepared from 4-(dimethylamino)benzaldehyde (1.49 g, 9.99 mmol) by Procedure B.

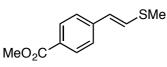
Purified by recrystallization: n-hexane/EtOAc = 9/1;

Yield: 47.9% (925 mg, 4.79 mmol);

Colorless solid;

mp: 81-82 °C;

TLC $R_{\rm f} = 0.56$ (*n*-hexane/EtOAc = 1/1);


¹H NMR (CDCl₃) δ 2.35 (s, 3H), 2.94 (s, 6H), 6.30 (d, *J* = 15.4 Hz, 1H), 6.51 (d, *J* = 15.4 Hz, 1H), 6.64–6.68 (AA'BB', 2H), 7.17–7.21 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 15.5 (1C), 40.7 (2C), 112.8 (2C), 120.8 (1C), 126.1 (1C), 126.2 (1C), 126.6 (2C), 149.7 (1C);
IR (ZnSe, cm⁻¹) 785, 823, 941, 1217, 1337, 1516, 1600, 2793;
HRMS (ESI⁺) *m*/*z* 194.0999 (194.0998 calcd for C₁₁H₁₆NS⁺, [M+H]⁺).

(E)-N-(4-(2-(Methylthio)vinyl)phenyl)acetamide (11)

Prepared from *N*-(4-formylphenyl)acetamide (1.63 g, 10.1 mmol) by Procedure B. Eluent for column chromatographic purification: *n*-hexane/EtOAc = 1/4; Yield: 10.0% (209 mg, 1.01 mmol); Colorless solid; mp: 168–169 °C; TLC R_f = 0.45 (*n*-hexane/EtOAc = 1/4); ¹H NMR (CDCl₃) δ 2.16 (s, 3H), 2.38 (s, 3H), 6.27 (d, *J* = 15.4 Hz, 1H), 6.71 (d, *J* = 15.4 Hz, 1H), 7.22–7.24 (AA'BB', 2H), 7.34 (br s, 1H), 7.42–7.44 (AA'BB', 2H); ¹³C NMR (CDCl₃) δ 15.1 (1C), 24.8 (1C), 120.2 (2C), 124.3 (1C), 125.2 (1C), 126.1 (2C), 133.5 (1C), 136.6 (1C), 168.4 (1C); IR (ZnSe, cm⁻¹) 762, 844, 937, 1319, 1406, 1504, 1585, 1659, 2311, 3277, 3736; HRMS (ESI⁺) *m*/z 230.0610 (230.0610 calcd for C₁₁H₁₃NNaOS⁺, [M+Na]⁺)

Methyl (E)-4-(2-(methylthio)vinyl)benzoate (1m)

Prepared from methyl 4-formylbenzoate (1.64 g, 9.99 mmol) by Procedure B.

Eluent for column chromatographic purification: n-hexane/EtOAc = 1/1;

Yield: 16.7% (348 mg, 1.67 mmol);

Colorless solid;

mp: 111–112 °C;

TLC $R_{\rm f} = 0.14$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 2.41 (s, 3H), 3.90 (s, 3H), 6.30 (d, *J* = 15.4 Hz, 1H), 6.98 (d, *J* = 15.4 Hz, 1H), 7.32–7.33 (AA'BB', 2H), 7.94–7.97 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 14.9 (1C), 52.2 (1C), 123.3 (1C), 125.2 (2C), 128.1 (1C), 129.6 (1C), 130.3 (2C), 141.6 (1C), 167.2 (1C);
IR (ZnSe, cm⁻¹) 754, 932, 1111, 1280, 1710, 2311, 2945, 3726;
HRMS (ESI⁺) *m/z* 209.0630 (209.0631 calcd for C₁₁H₁₃O₂S⁺, [M+H]⁺).

(E)-Methyl 4-(trifluoromethyl)styryl sulfide (1n)

Prepared from 4-(trifluoromethyl)benzyl bromide (2.39 g, 9.99 mmol) by Procedure A.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

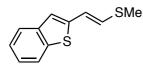
Yield: 22.5% (491 mg, 2.25 mmol);

Colorless solid;

mp: 55–56 °C;

TLC $R_{\rm f} = 0.55$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 2.41 (s, 3H), 6.29 (d, *J* = 15.4 Hz, 1H), 6.94 (d, *J* = 15.4 Hz, 1H), 7.36–7.38 (AA'BB', 2H), 7.52–7.55 (AA'BB', 2H);


¹³C NMR (CDCl₃) δ 14.8 (1C), 122.9 (1C), 124.5 (q, ¹*J*_{C-F} = 241.8 Hz, 1C), 125.5 (2C), 125.8, (q, ³*J*_{C-F} = 3.8 Hz, 2C), 128.4 (q, ²*J*_{C-F} = 34.5 Hz, 1C), 129.4 (1C), 140.6 (1C);

¹⁹F NMR (CDCl₃) δ –62.3 (s);

IR (ZnSe, cm⁻¹) 829, 1067, 1105, 1163, 1323, 1595, 3744;

HRMS (ESI⁺) m/z 219.0447 (219.0450 calcd for C₁₀H₁₀F₃S⁺, [M+H]⁺).

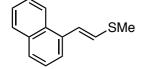
2-(2-(Methylthio)vinyl)benzo[b]thiophene (10, *E*/*Z* = 41:1)

Prepared from benzo[b]thiophene-2-carbaldehyde (1.62 g, 9.99 mmol) by Procedure B.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

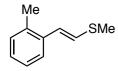
Yield: 70.9% (1.46 g, 7.08 mmol, *E*/*Z* = 41:1);

Pale yellow oil;


TLC $R_{\rm f} = 0.37$ (*n*-hexane/EtOAc = 4/1);

For *E*-isomer:

¹H NMR (CDCl₃) δ 2.42 (s, 3H), 6.58–6.63 (m, 1H), 6.86 (d, *J* = 15.4 Hz, 1H), 7.30 (s, 1H), 7.34–7.43 (m, 2H), 7.84–7.88 (m, 2H);


¹³C NMR (CDCl₃) δ 15.2 (1C), 117.6 (1C), 120.2 (1C), 122.0 (1C), 123.1 (1C), 124.4 (1C), 124.7 (1C), 127.7 (1C), 133.9 (1C), 137.5 (1C), 140.4 (1C); IR (ZnSe, cm⁻¹) 725, 752, 926, 1229, 1423, 1587, 3065; HRMS (ESI⁺) *m/z* 207.0295 (207.0297 calcd for C₁₁H₁₁S₂⁺, [M+H]⁺).

(E)-Methyl 2-(naphthalen-1-yl)vinyl sulfide (1p)

Prepared from 1-(bromomethyl)naphthalene (2.21 g, 10.0 mmol) by Procedure A. Eluent for column chromatographic purification: *n*-hexane/EtOAc = 49/1; Yield: 16.1% (322 mg, 1.61 mmol); Colorless oil; TLC $R_f = 0.61$ (*n*-hexane/EtOAc = 9/1); ¹H NMR (CDCl₃) δ 2.48 (s, 3H), 6.83 (d, J = 15.0 Hz, 1H), 7.06 (d, J = 15.0 Hz, 1H), 7.39–7.54 (m, 4H), 7.74 (d, J = 8.2 Hz, 1H), 7.81–7.85 (m, 1H), 8.07–8.13 (m, 1H); ¹³C NMR (CDCl₃) δ 15.3 (1C), 122.1 (1C), 123.3 (1C), 123.9 (1C), 125.9 (1C), 126.0 (1C), 126.1 (1C), 127.5 (1C), 128.7 (1C), 128.8 (1C), 130.8 (1C), 133.9 (1C), 135.0 (1C); IR (ZnSe, cm⁻¹) 748, 781, 930, 1572, 1582, 3055; HRMS (ESI⁺) *m/z* 201.0731 (201.0732 calcd for C₁₃H₁₃S⁺, [M+H]⁺).

(E)-Methyl 2-methylstyryl sulfide (1q)

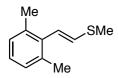
Prepared from 2-methylbenzyl bromide (1.85 g, 10.0 mmol) by Procedure A.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

Yield: 51.5% (846 mg, 5.15 mmol);

Colorless oil;

TLC $R_{\rm f} = 0.50$ (*n*-hexane/EtOAc = 9/1);


¹H NMR (CDCl₃) δ 2.33 (s, 3H), 2.39 (s, 3H), 6.51 (d, *J* = 15.4 Hz, 1H), 6.67 (d, *J* = 15.4 Hz, 1H), 7.08–7.18 (m, 3H), 7.33–7.36 (m, 1H);

¹³C NMR (CDCl₃) δ 15.2 (1C), 20.0 (1C), 123.0 (1C), 125.1 (1C), 126.3 (1C), 126.9 (1C), 127.0 (1C), 130.5 (1C), 134.6 (1C), 136.3 (1C);

IR (ZnSe, cm⁻¹) 740, 930, 1242, 1433, 1587, 2916, 3017;

HRMS (ESI⁺) m/z 165.0732 (165.0732 calcd for C₁₀H₁₃S⁺, [M+H]⁺).

(E)-Methyl 2,6-dimethylstyryl sulfide (1r)

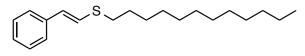
Prepared from 2,6-dimethylbenzaldehyde (670 mg, 4.99 mmol) by Procedure B.

Eluent for column chromatographic purification: n-hexane/EtOAc = 49/1;

Yield: 45.7% (407 mg, 2.28 mmol);

Colorless oil;

TLC $R_{\rm f} = 0.38$ (*n*-hexane);


¹H NMR (CDCl₃) δ 2.31 (s, 6H), 2.39 (s, 3H), 6.26 (d, *J* = 15.8 Hz, 1H), 6.31 (d, *J* = 15.8 Hz, 1H), 7.02–7.04 (m, 3H);

¹³C NMR (CDCl₃) δ 15.0 (1C), 21.2 (2C), 123.1 (1C), 126.6 (1C), 128.0 (2C), 129.6 (1C), 136.1 (2C), 136.8 (1C);

IR (ZnSe, cm⁻¹) 740, 930, 1242, 1433, 1587, 2916, 3017;

HRMS (ESI⁺) m/z 179.0889 (179.0889 calcd for C₁₁H₁₅S⁺, [M+H]⁺).

(*E*)-Dodecyl styryl sulfide (4)^{S8}

To a 50 mL round-bottom flask equipped with a magnetic stir bar and charged with sodium *tert*-butoxide (274 mg, 2.85 mmol, 1.5 equiv) in HMPA (5 mL) was added 1-dodecanethiol (0.72 mL, 3.03 mmol, 1.6 equiv) at 0 °C. After stirring for 30 min at the same temperature, to the reaction mixture was added (*E*)-(2-bromovinyl)benzene (348 mg, 1.90 mmol, 1 equiv) in HMPA (5 mL) and warmed up to room temperature. After stirring for 12 h at the same temperature, to the reaction mixture was added water (ca. 10 mL) and extracted with Et₂O (ca. 10 mL × 3). The combined organic extract was washed with brine (ca. 20 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane) to give **4** (516 mg, 1.69 mmol, 89.1%) as a colorless oil;

TLC $R_{\rm f} = 0.74$ (*n*-hexane/EtOAc = 10/1);

¹H NMR (CDCl₃) δ 0.88 (t, *J* = 6.8 Hz, 3H), 1.20–1.36 (m, 16H), 1.37–1.48 (m, 2H), 1.64–1.74 (m, 2H), 2.80 (t, *J* = 7.3 Hz, 2H), 6.46 (d, *J* = 15.4 Hz, 1H), 6.73 (d, *J* = 15.4 Hz, 1H), 7.15–7.22 (m, 1H), 7.26–7.32 (m, 4H);

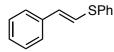
¹³C NMR (CDCl₃) δ 14.3 (1C), 22.9 (1C), 29.0 (1C), 29.4 (1C), 29.5 (1C), 29.6 (1C), 29.70 (1C), 29.78 (1C), 29.82 (1C), 29.84 (1C), 32.1 (1C), 32.8 (1C), 125.5 (1C), 125.6 (2C), 126.8 (1C), 126.9 (1C), 128.8 (2C), 137.4 (1C);

The chemical shifts were consistent with those reported in the literature.^{S10}

(*E*)-Isopropyl styryl sulfide (5)^{S8}

ſŢ, s↓

To a 50 mL round-bottom flask equipped with a magnetic stir bar and charged with sodium *tert*-butoxide (256 mg, 2.66 mmol, 1.5 equiv) in HMPA (5 mL) was added 2-propanethiol (0.26 mL, 2.80 mmol, 1.6 equiv) at 0 °C. After stirring for 30 min at the same temperature, to the reaction mixture was added (*E*)-(2-bromovinyl)benzene (325 mg, 1.78 mmol, 1 equiv) in HMPA (5 mL) and warmed up to room temperature. After stirring for 12 h at the same temperature, to the reaction mixture was added water (ca. 10 mL) and extracted with Et₂O (ca. 10 mL × 3). The combined organic extract was washed with brine (ca. 20 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane) to give **5** (230 mg, 1.29 mmol, 72.7%) as a colorless oil;

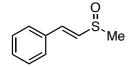

TLC $R_{\rm f} = 0.73$ (*n*-hexane/EtOAc = 10/1);

¹H NMR (CDCl₃) δ 1.37 (d, J = 6.8 Hz, 6H), 3.24 (sept, J = 6.8 Hz, 1H), 6.57 (d, J = 15.6 Hz, 1H), 6.77 (d, J = 15.6 Hz, 1H), 7.16–7.24 (m, 1H), 7.27–7.33 (m, 4H);

¹³C NMR (CDCl₃) δ 23.6 (2C), 37.0 (1C), 124.2 (1C), 125.8 (2C), 127.1 (1C), 128.8 (2C), 129.0 (1C), 137.3 (1C);

The chemical shifts were consistent with those reported in the literature.^{S11}

Phenyl styryl sulfide (6, E/Z = 14:1)^{S8}



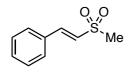
To a 50 mL round-bottom flask equipped with a magnetic stir bar and charged with sodium thiophenoxide (90%; 635 mg, 4.32 mmol, 1.5 equiv) in HMPA (5 mL) was added (*E*)-(2-bromovinyl)benzene (528 mg, 2.88 mmol, 1 equiv) in HMPA (10 mL) at room temperature and warmed up to room temperature. After stirring for 12 h at the same temperature, to the reaction mixture was added water (ca. 15 mL) and extracted with Et₂O (ca. 10 mL × 3). The combined organic extract was washed with brine (ca. 20 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane) to give **6** (396 mg, 1.87 mmol, 64.7%, E/Z = 14:1) as a colorless solid;

mp: 33–34 °C; TLC $R_f = 0.72$ (*n*-hexane/EtOAc = 10/1); For *E*-isomer: ¹H NMR (CDCl₃) δ 6.74 (d, *J* = 15.4 Hz, 1H), 6.89 (d, *J* = 15.4 Hz, 1H), 7.21–7.45 (m, 10H); ¹³C NMR (CDCl₃) δ 123.6 (1C), 126.2 (2C), 127.1 (1C), 127.8 (1C), 128.9 (2C), 129.3 (2C), 130.0 (2C), 132.0 (1C), 135.4 (1C), 136.7 (1C);

The chemical shifts were consistent with those reported in the literature.^{S11}

(E)-(2-(Methylsulfinyl)vinyl)benzene (11)

To a 100 mL round-bottom flask equipped with a magnetic stir bar and charged with (*E*)-1a (654 mg, 4.35 mmol, 1 equiv) in MeCN (20 mL) was added sodium periodate (1.02 g, 4.77 mmol, 1.1 equiv) in water (10 mL) at -10 °C and warmed up to room temperature. After stirring for 24 h at the same temperature, to the reaction mixture was added water (ca. 20 mL) and extracted with CH₂Cl₂ (ca. 30 mL × 3). The combined organic extract was washed with brine (ca. 40 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane/EtOAc = 1:1 to 0:1) to give **11** (597 mg, 3.59 mmol, 82.5%) as a colorless solid;


mp: 63–64 °C;

TLC $R_{\rm f} = 0.10$ (*n*-hexane/EtOAc = 1/1);

¹H NMR (CDCl₃) δ 2.71 (s, 3H), 6.90 (d, *J* = 15.6 Hz, 1H), 7.27 (d, *J* = 15.6 Hz, 1H), 7.34–7.42 (m, 3H), 7.46–7.50 (m, 2H);

¹³C NMR (CDCl₃) δ 41.1 (1C), 127.8 (2C), 129.1 (2C), 129.9 (1C), 132.3 (1C), 133.8 (1C), 136.5 (1C); The chemical shifts were consistent with those reported in the literature.^{S12}

(E)-(2-(Methylsulfonyl)vinyl)benzene (12)

To a 100 mL round-bottom flask equipped with a magnetic stir bar and charged with **11** (239 mg, 1.44 mmol, 1 equiv) in CH_2Cl_2 (14 mL) was added *m*CPBA (70%, 426 mg, 1.73 mmol, 1.2 equiv) at 0 °C and warmed up to room temperature. After stirring for 22 h at the same temperature, to the reaction mixture were added saturated aqueous sodium hydrogen carbonate (ca. 10 mL) and

saturated aqueous sodium thiosulfate (ca. 10 mL), and then extracted with CH_2Cl_2 (ca. 30 mL × 3). The combined organic extract was washed with brine (ca. 40 mL) and dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (*n*-hexane/EtOAc = 4:1 to 1:1) to give **12** (247 mg, 1.36 mmol, 94.3%) as a colorless solid;

mp: 78–79 °C;

TLC $R_{\rm f} = 0.29$ (*n*-hexane/EtOAc = 1/1);

¹H NMR (CDCl₃) δ 3.04 (s, 3H), 6.92 (d, *J* = 15.4 Hz, 1H), 7.40–7.48 (m, 3H), 7.50–7.55 (m, 2H), 7.64 (d, *J* = 15.4 Hz, 1H);

¹³C NMR (CDCl₃) δ 43.5 (1C), 126.3 (1C), 128.8 (2C), 129.3 (2C), 131.6 (1C), 132.2 (1C), 144.2 (1C); The chemical shifts were consistent with those reported in the literature.^{S13}

General procedure for 1,1-diborylation of alkenyl sulfide 1

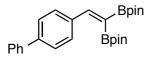
To a capped vial equipped with a magnetic stir bar were added $[Rh(OH)(cod)]_2$ (1.8 mg, 3.9 µmol, 2 mol %), K₂CO₃ (3.4 mg, 25 µmol, 12 mol %), P(*n*-Bu)₃ (5.9 µL, 24 µmol, 12 mol %) and *n*-hexane (1.0 mL) in a glovebox filled with argon gas, and the mixture was stirred for 1 h at room temperature. To the mixture were added bis(pinacolato)diboron ((Bpin)₂) (102 mg, 0.402 mmol, 2.0 equiv) as a solid and alkenyl sulfide **1** (0.200 mmol, 1 equiv) as a solution or a suspension in *n*-hexane (0.5 mL). After stirring the mixture for 6 h with heating at 80 °C, the reaction vial was cooled to room temperature and taken out from the glovebox. To this was added saturated aqueous ammonium chloride (ca. 1 mL), and the mixture was extracted with EtOAc (ca. 1 mL × 3). The combined organic extract was dried over Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by PTLC followed by GPC when required for further purification. PTLC purification of **3** was conducted with cooling a developing chamber by a dry ice–acetone bath to avoid severe tailing on PTLC probably due to high affinity of **3** to silica-gel.

2,2'-(2-Phenylethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3a)

Bpin Bpin

Yield: 90.0% (64.2 mg, 0.180 mmol);
Pale yellow oil;
Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;
TLC *R*_f = 0.13 (*n*-hexane/EtOAc = 9/1);
¹H NMR (CDCl₃) δ 1.28 (s, 12H), 1.31 (s, 12H), 7.24–7.32 (m, 3H), 7.47–7.49 (AA'BB'C, 2H),
7.71 (s, 1H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 25.1 (4C), 83.4 (2C), 83.8 (2C), 128.29 (2C), 128.34 (2C), 128.6 (1C), 139.8 (1C), 155.4 (1C) (the signal for the carbon that is attached to the boron atom was not observed); ¹¹B NMR (CDCl₃) δ 31.4 (1B+1B, two signals overlapped);


The chemical shifts were consistent with those reported in the literature.^{S15}

2,2'-(2-(4-Methylphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3b)

¹¹B NMR (CDCl₃) δ 30.4 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

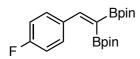
2,2'-(2-(Biphenyl-4-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3c)

Yield: 65.0% (56.2 mg, 0.130 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.23$ (*n*-hexane/EtOAc = 9/1);


¹H NMR (CDCl₃) δ 1.29 (s, 12H), 1.34 (s, 12H), 7.30–7.36 (m, 1H), 7.39–7.48 (m, 2H), 7.52–7.61 (m, 6H), 7.74 (s, 1H);

¹³C NMR (CDCl₃) δ 24.9 (4C), 25.1 (4C), 83.4 (2C), 83.8 (2C), 127.0 (2C), 127.2 (2C), 127.6 (1C), 128.87 (2C), 128.93 (2C), 138.7 (1C), 140.9 (1C), 141.3 (1C), 154.8 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.7 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

2,2'-(2-(4-Fluorophenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3d)

Yield: 75.1% (56.2 mg, 0.150 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.26$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 1.28 (s, 12H), 1.31 (s, 12H), 6.95–7.01 (AA'BB'X, 2H), 7.44–7.49 (AA'BB'X, 2H), 7.66 (s, 1H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 25.0 (4C), 83.4 (2C), 83.8 (2C), 115.2 (d, ²*J*_{C-F} = 21.0 Hz, 2C), 130.1 (d, ³*J*_{C-F} = 7.6 Hz, 2C), 136.0 (d, ⁴*J*_{C-F} = 2.9 Hz, 1C), 154.0 (1C), 163.0 (d, ¹*J*_{C-F} = 248.0 Hz,

1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.9 (1B+1B, two signals overlapped);

¹⁹F NMR (CDCl₃) δ –113.0 (m);

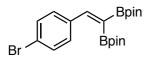
The chemical shifts were consistent with those reported in the literature.^{S14}

2,2'-(2-(4-Chlorophenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3e)

Yield: 92.6% (72.3 mg, 0.185 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

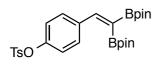

TLC $R_{\rm f} = 0.25$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 1.28 (s, 12H), 1.31 (s, 12H), 7.25–7.28 (AA'BB', 2H), 7.40–7.43 (AA'BB', 2H), 7.64 (s, 1H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 25.0 (4C), 83.5 (2C), 83.9 (2C), 128.5 (2C), 129.6 (2C), 134.4 (1C), 138.2 (1C), 153.8 (1C) (the signal for the carbon that is attached to the boron atom was not observed); ¹¹B NMR (CDCl₃) δ 30.2 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

2,2'-(2-(4-Bromophenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3f)



Yield: 81.2% (70.6 mg, 0.162 mmol); Pale yellow oil; Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C; TLC $R_f = 0.25$ (*n*-hexane/EtOAc = 9/1); ¹H NMR (CDCl₃) δ 1.28 (s, 12H), 1.31 (s, 12H), 7.33-7.37 (AA'BB', 2H), 7.41-7.44 (AA'BB', 2H), 7.62 (s, 1H); ¹³C NMR (CDCl₃) δ 24.8 (4C), 25.0 (4C), 83.5 (2C), 83.9 (2C), 122.7 (1C), 129.9 (2C), 131.5 (2C), 138.7 (1C), 153.8 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.2 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

4-(2,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl 4-methylbenzenesulfonate (3g)

Yield: 86.6% (91.1 mg, 0.173 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.26$ (*n*-hexane/EtOAc = 4/1);

¹H NMR (CDCl₃) δ 1.27 (s, 12H), 1.28 (s, 12H), 2.43 (s, 3H), 6.89–6.92 (AA'BB', 2H), 7.26–7.30 (AA'BB', 2H), 7.36–7.40(AA'BB', 2H), 7.62 (s, 1H), 7.65–7.68 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 21.9 (1C), 24.8 (4C), 25.0 (4C), 83.5 (2C), 83.9 (2C), 122.2 (2C), 128.7 (2C), 129.5 (2C), 129.9 (2C), 132.3 (1C), 138.8 (1C), 145.5 (1C), 149.7 (1C), 153.5 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.2 (1B+1B, two signals overlapped);

IR (ZnSe, cm⁻¹) 845, 1138, 1331, 1371, 1501, 1599, 2976;

HRMS (ESI⁺) *m*/*z* 549.2248 (549.2260 calcd for C₂₇H₃₆B₂NaO₇S⁺, [M+Na]⁺).

2,2'-(2-(4-(Methylthio)phenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3h)

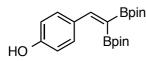
MeS Bpin

Yield: 64.8% (52.1 mg, 0.130 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.33$ (*n*-hexane/EtOAc = 4/1);


¹H NMR (CDCl₃) δ 1.27 (s, 12H), 1.32 (s, 12H), 2.48 (s, 3H), 7.15–7.18 (AA'BB', 2H), 7.40–7.43 (AA'BB', 2H), 7.64 (s, 1H);

¹³C NMR (CDCl₃) δ 15.7 (1C), 24.9 (4C), 25.0 (4C), 83.4 (2C), 83.8 (2C), 126.0 (2C), 128.8 (2C), 136.5 (1C), 139.3 (1C), 154.6 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.5 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

4-(2,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenol (3i)

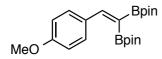
Yield: 57.8% (43.0 mg, 0.116 mmol);

Pale yellow oil;

Eluent for GPC purification: CHCl₃;

TLC $R_{\rm f} = 0.29$ (*n*-hexane/EtOAc = 7/3);

¹H NMR (CDCl₃) δ 1.26 (s, 12H), 1.32 (s, 12H), 5.52 (s, 1H), 6.72–6.74 (AA'BB', 2H), 7.34–7.36 (AA'BB', 2H), 7.64 (s, 1H);


¹³C NMR (CDCl₃) δ 24.8 (4C), 25.0 (4C), 83.3 (2C), 83.8 (2C), 115.3 (2C), 130.1 (2C), 132.6 (1C), 155.3 (1C), 156.5 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.1 (1B+1B, two signals overlapped);

IR (ZnSe, cm⁻¹) 1136, 1601, 2932, 2978, 3352;

HRMS (ESI⁺) *m*/*z* 373.2347 (373.2352 calcd for C₂₀H₃₁B₂O₅⁺, [M+H]⁺).

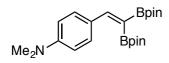
2,2'-(2-(4-Methoxyphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3j)

Yield: 88.1% (68.0 mg, 0.176 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.26$ (*n*-hexane/EtOAc =4/1);


¹H NMR (CDCl₃) δ 1.27 (s, 12H), 1.33 (s, 12H), 3.79 (s, 3H), 6.80–6.84 (AA'BB', 2H), 7.43–7.46 (AA'BB', 2H), 7.66 (s, 1H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 26.0 (4C), 55.4 (1C), 83.2 (2C), 83.7 (2C), 113.7 (2C), 129.9 (2C), 132.6 (1C), 154.9 (1C), 160.1 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.7 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

4-(2,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-*N*,*N*-dimethylaniline (3k)

Yield: 85.6% (68.3 mg, 0.171 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.13$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 1.26 (s, 12H), 1.34 (s, 12H), 2.96 (s, 6H), 6.60–6.63 (AA'BB', 2H), 7.39–7.43 (AA'BB', 2H), 7.62 (s, 1H);

¹³C NMR (CDCl₃) δ 24.9 (4C), 25.0 (4C), 40.5 (2C), 83.0 (2C), 83.5 (2C), 111.7 (2C), 128.0 (1C), 130.0 (2C), 150.8 (1C), 155.8 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.1 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

N-(4-(2,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetamide (3l)

AcHN Bpin

Yield: 50.0% (41.3 mg, 0.100 mmol);

Pale yellow oil;

Eluent for GPC purification: CHCl₃;

TLC $R_{\rm f} = 0.13$ (*n*-hexane/EtOAc = 3/2);

¹H NMR (CDCl₃) δ 1.27 (s, 12H), 1.32 (s, 12H), 2.14 (s, 3H), 7.41 (m, 4H), 7.48 (br s, 1H), 7.64 (s, 1H);

¹³C NMR (CDCl₃) δ 24.9 (4C+1C, two signals overlapped), 25.0 (4C), 83.4 (2C), 83.9 (2C), 119.2 (2C), 129.1 (2C), 135.6 (1C), 138.5 (1C), 154.7 (1C), 168.5 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.3 (1B+1B, two signals overlapped);

IR (ZnSe, cm⁻¹) 839, 1140, 1533, 1589, 1686, 2979, 3333;

HRMS (ESI⁺) *m*/*z* 436.2431 (436.2437 calcd for C₂₂H₃₃B₂NNaO₅⁺, [M+Na]⁺).

Methyl 4-(2,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate (3m)

Yield: 78.2% (64.8 mg, 0.156 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 7/3 at -78 °C;

TLC $R_{\rm f} = 0.33$ (*n*-hexane/EtOAc = 4/1);

¹H NMR (CDCl₃) δ 1.28 (s, 12H), 1.31 (s, 12H), 3.91 (s, 3H), 7.53–7.55 (AA'BB', 2H), 7.71 (s, 1H), 7.96–7.98 (AA'BB', 2H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 25.0 (4C), 52.3 (1C), 83.6 (2C), 84.0 (2C), 128.2 (2C), 129.7 (2C), 129.8 (1C), 144.1 (1C), 153.8 (1C), 167.1 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 28.9 (1B+1B, two signals overlapped);

IR (ZnSe, cm⁻¹) 845, 1107, 1138, 1269, 1605, 1721, 2978;

HRMS (ESI⁺) *m*/*z* 415.2449 (415.2458 calcd for C₂₂H₃₃B₂O₆⁺, [M+H]⁺).

2,2'-(2-(4-(Trifluoromethyl)phenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3n)

Yield: 83.4% (70.7 mg, 0.167 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.18$ (*n*-hexane/EtOAc = 9/1);

¹H NMR (CDCl₃) δ 1.29 (s, 12H), 1.31 (s, 12H), 7.54–7.59 (AA'BB', 2H+2H, two signals overlapped), 7.70 (s, 1H);

¹³C NMR (CDCl₃) δ 24.8 (4C), 25.1 (4C), 83.7 (2C), 84.1 (2C), 124.3 (q, ¹*J*_{C-F} = 276.9 Hz, 1C), 125.3 (q, ³*J*_{C-F} = 3.8 Hz, 2C), 128.4 (2C), 130.2 (q, ²*J*_{C-F} = 32.4 Hz, 1C), 143.1 (1C), 153.3 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.1 (1B+1B, two signals overlapped);

¹⁹F NMR (CDCl₃) δ –62.4 (s);

The chemical shifts were consistent with those reported in the literature.^{S14}

2,2'-(2-(Benzo[*b*]thiophen-2-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (30)

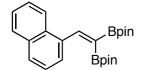
Yield: 61.9% (51.0 mg, 0.124 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.37$ (*n*-hexane/EtOAc = 4/1);

¹H NMR (CDCl₃) δ 1.27 (s, 12H), 1.30 (s, 12H), 7.32–7.40 (m, 2H), 7.75–7.76 (s, 1H), 7.81–7.84 (m, 1H), 7.90–7.92 (m, 2H);


¹³C NMR (CDCl₃) δ 24.9 (4C), 25.1 (4C), 83.4 (2C), 83.9 (2C), 122.6 (1C), 122.7 (1C), 124.3 (1C), 124.6 (1C), 124.7 (1C), 137.1 (1C), 138.5 (1C), 140.1 (1C), 146.5 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.0 (1B+1B, two signals overlapped);

IR (ZnSe, cm⁻¹) 731, 851, 1138, 1300, 1345, 1591, 2976;

HRMS (ESI⁺) *m*/*z* 413.2117 (413.2124 calcd for C₂₂H₃₁B₂O₄S⁺, [M+H]⁺).

2,2'-(2-(Naphthalen-1-yl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3p)

Yield: 72.8% (59.1 mg, 0.146 mmol); Pale yellow oil; Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C; TLC $R_f = 0.32$ (*n*-hexane/EtOAc = 9/1); ¹H NMR (CDCl₃) δ 1.16 (s, 12H), 1.31 (s, 12H), 7.32–7.51 (m, 3H), 7.61–7.63 (m, 1H), 7.76–7.83 (m, 2H), 8.09–8.13 (m, 1H), 8.41 (s, 1H); ¹³C NMR (CDCl₃) δ 24.6 (4C), 25.1 (4C), 83.4 (2C), 83.6 (2C), 125.1 (1C), 125.3 (1C), 125.7 (1C), 126.0 (1C), 126.1 (1C), 128.3 (1C), 128.8 (1C), 131.5 (1C), 133.5 (1C), 137.9 (1C), 153.7 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 30.3 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S15}

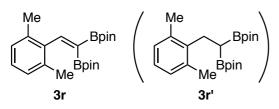
2,2'-(2-(2-Methylphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3q)

Yield: 69.4% (51.4 mg, 0.139 mmol);

Pale yellow oil;

Conditions for PTLC purification: *n*-hexane/EtOAc = 4/1 at -78 °C;

TLC $R_{\rm f} = 0.26$ (*n*-hexane/EtOAc = 9/1);


¹H NMR (CDCl₃) δ 1.24 (s, 12H), 1.28 (s, 12H), 2.35 (s, 3H), 7.02–7.19 (m, 3H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.89 (s, 1H);

¹³C NMR (CDCl₃) δ 20.0 (1C), 24.7 (4C), 25.1 (4C), 83.3 (2C), 83.7 (2C), 125.7 (1C), 127.9 (1C), 128.5 (1C), 130.0 (1C), 136.5 (1C), 139.4 (1C), 154.4 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

¹¹B NMR (CDCl₃) δ 29.7 (1B+1B, two signals overlapped);

The chemical shifts were consistent with those reported in the literature.^{S14}

2,2'-(2-(2,6-Dimethylphenyl)ethene-1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3r)

¹H NMR yield: 38%;

Total weight of the product after the PTLC purification: 15.8 mg (containing the corresponding reduced product **3r'**, although not fully characterized, 94:6 in molar ratio);

Net yield: 19%;

Colorless oil;

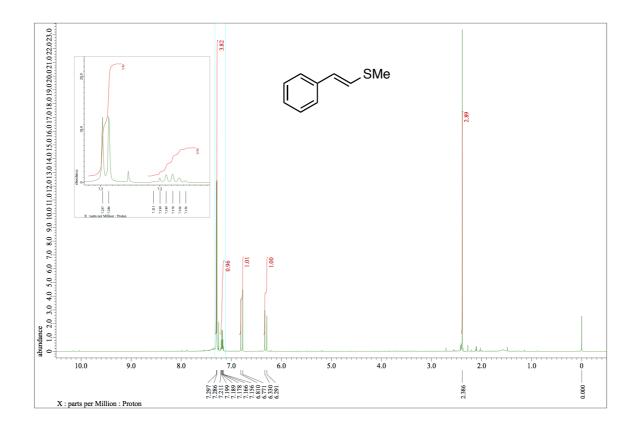
Conditions for PTLC purification: *n*-hexane/EtOAc = 8/2 at -78 °C;

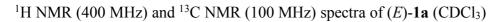
TLC $R_{\rm f} = 0.31$ (*n*-hexane/EtOAc = 9/1);

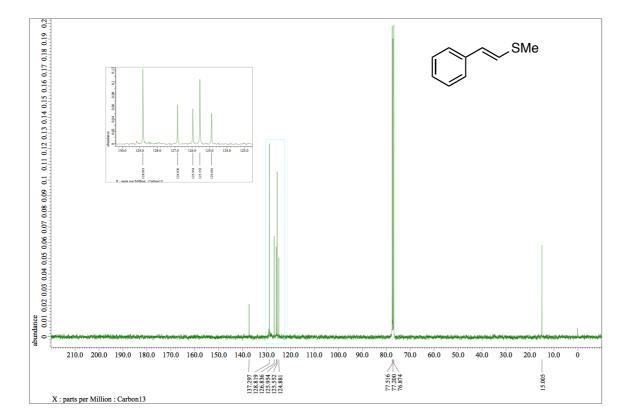
¹H NMR (CDCl₃) δ 0.97 (s, 12H), 1.29 (s, 12H), 2.23 (s, 6H), 6.93–7.03 (m, 3H), 7.69 (s, 1H);

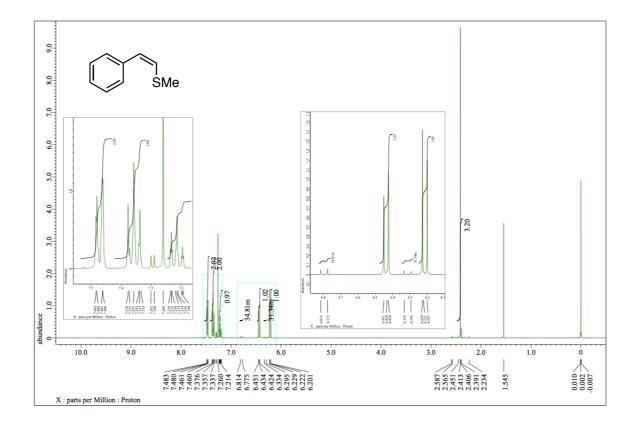
¹³C NMR (CDCl₃) δ 20.6 (2C), 24.3 (4C), 25.0 (4C), 83.1 (2C), 83.2 (2C), 126.6 (1C), 126.7 (2C),

135.4 (2C), 140.7 (1C), 156.4 (1C) (the signal for the carbon that is attached to the boron atom was not observed);

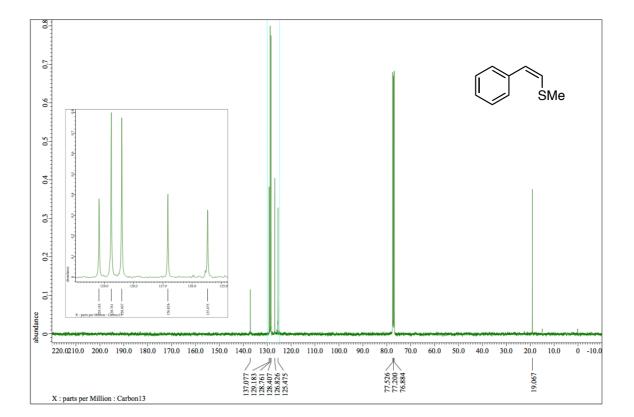

¹¹B NMR (CDCl₃) δ 30.1 (1B+1B, two signals overlapped);

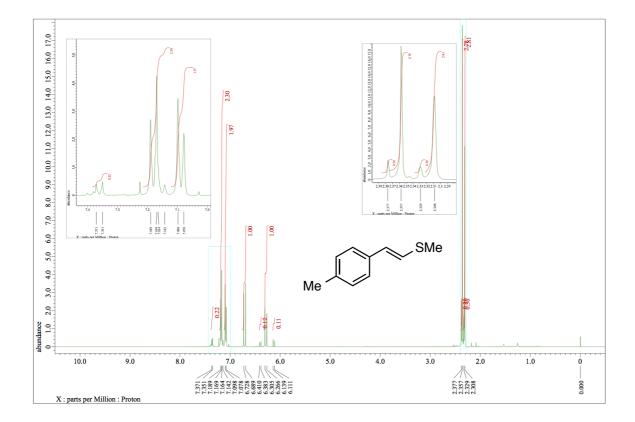

IR (ZnSe, cm⁻¹) 673, 762, 856, 1013, 1140, 1325, 2976;

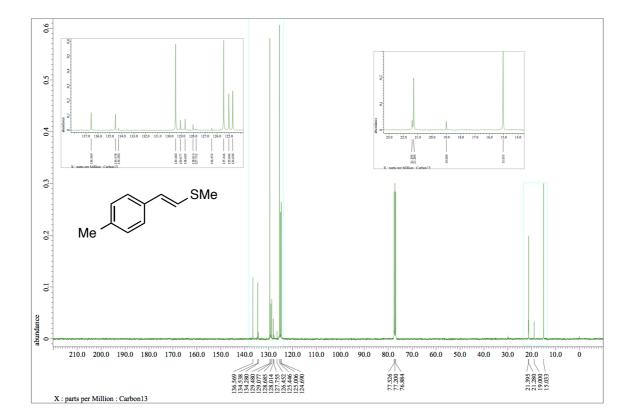

HRMS (ESI⁺) *m*/*z* 385.2716 (385.2716 calcd for C₂₂H₃₅B₂O₄⁺, [M+H]⁺).

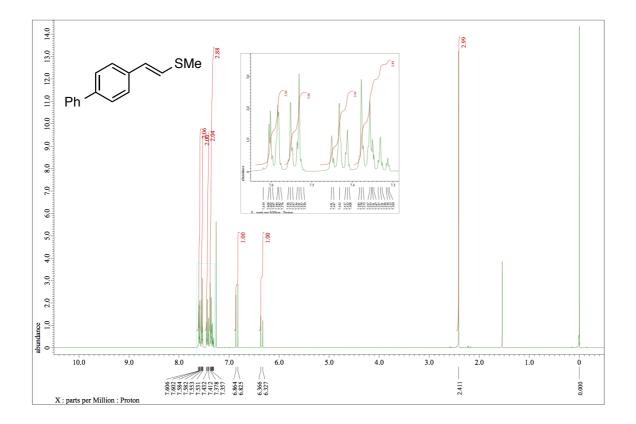

References for Supporting Information

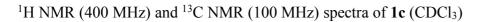
- (S1) Lei, X.; Jalla, A.; Abou Shama, M. A.; Stafford, J. M.; Cao, B. Synthesis 2015, 47, 2578.
- (S2) Wark, T. A.; Stephan, D. W. Can. J. Chem. 1990, 68, 565.
- (S3) Poladura, B.; Martínez-Castañeda, Á.; Rodríguez-Solla, H.; Llavona, R.; Concellón, C.; del Amo, V. Org. Lett. 2013, 15, 2810.
- (S4) Liu, J.; Ren, Q.; Zhang, X.; Gong, H. Angew. Chem., Int. Ed. 2016, 55, 15544.
- (S5) Tsukasa, H.; Saito, S. Yukagaku 1975, 24, 659.
- (S6) Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777.
- (S7) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. J. Org. Chem. 1983, 48, 4795.
- (S8) Chen, X.; Rappoport, Z. J. Org. Chem. 1998, 63, 5684.
- (S9) Zhong, P.; Huang, X. J. Serb. Chem. Soc. 2004, 69, 175.
- (S10) Kao, H.-L.; Lee, C.-F. Org. Lett. 2011, 13, 5204.
- (S11) Bates, C. G.; Saejueng, P.; Doherty, M. Q.; Venkataraman, D. Org. Lett. 2004, 6, 5005.
- (S12) van Steenis, J. H.; van Es, J. J. G. S.; van der Gen, A. Eur. J. Org. Chem. 2000, 2787.
- (S13) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2017, 19, 1100.
- (S14) Wen, H.; Zhang, L.; Zhu, S.; Liu, G.; Huang, Z. ACS Catal. 2017, 7, 6419.
- (S15) Ho, H. E.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4670.

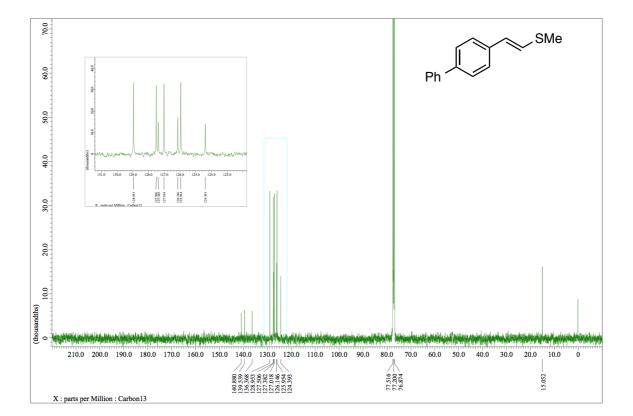


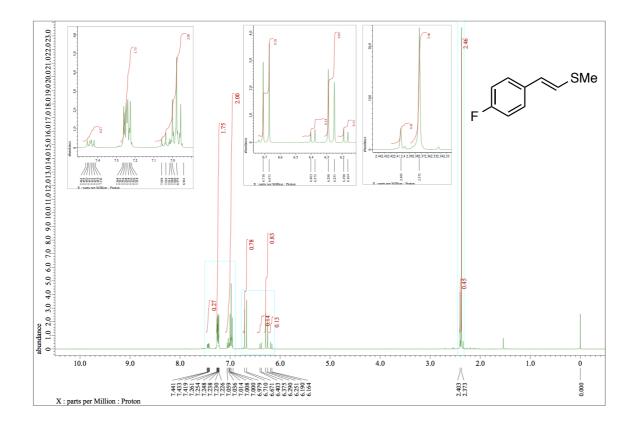


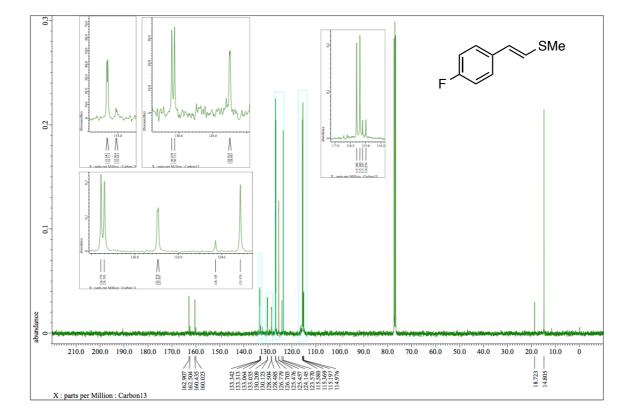


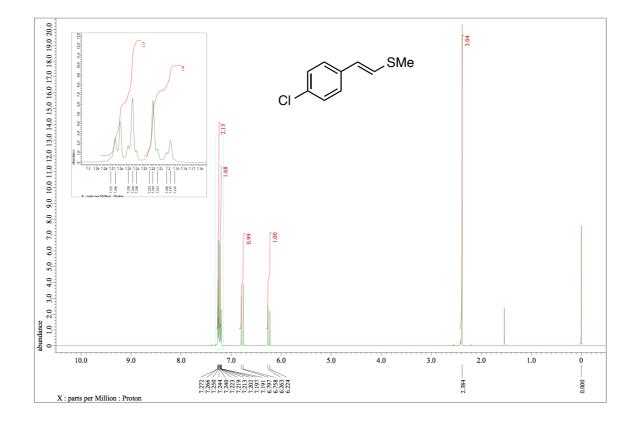

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of (Z)-1a (CDCl₃)

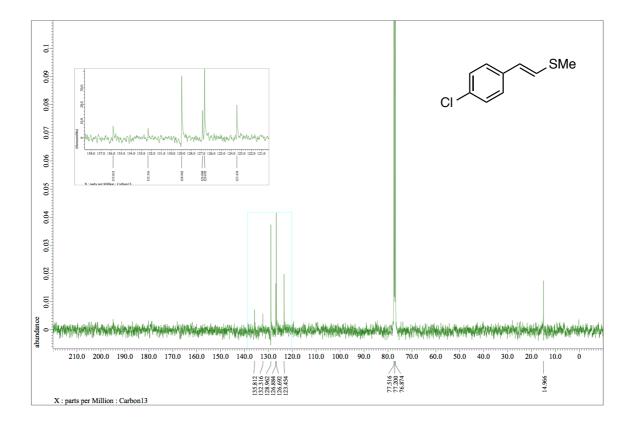


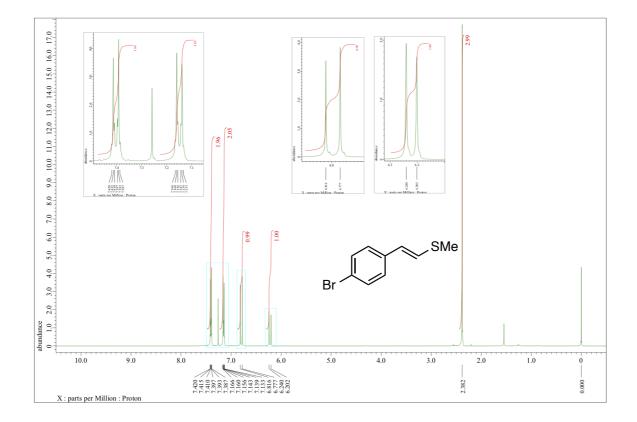


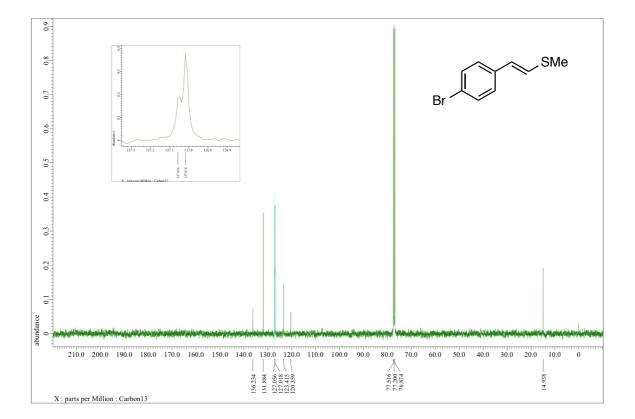

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1b** (E/Z = 7.8:1, CDCl₃)

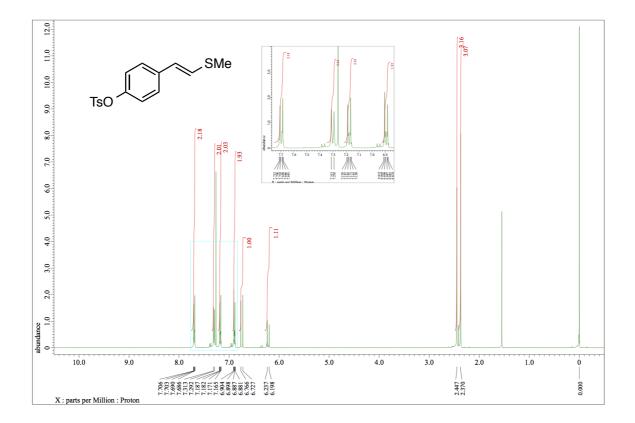


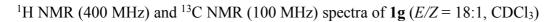


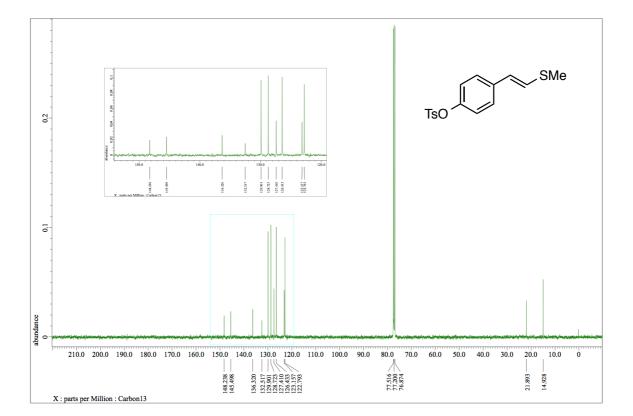


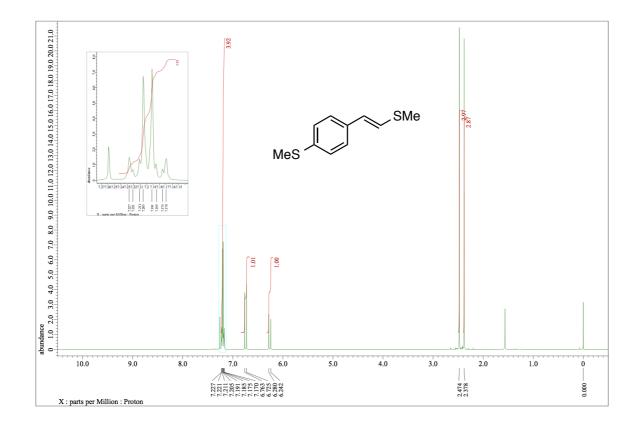

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 1d (E/Z = 6.5:1, CDCl₃)

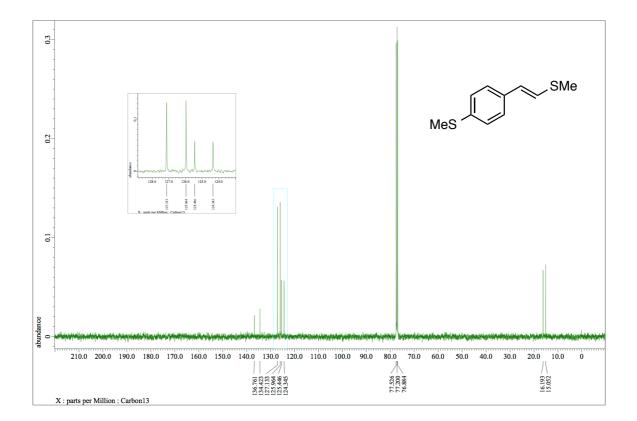


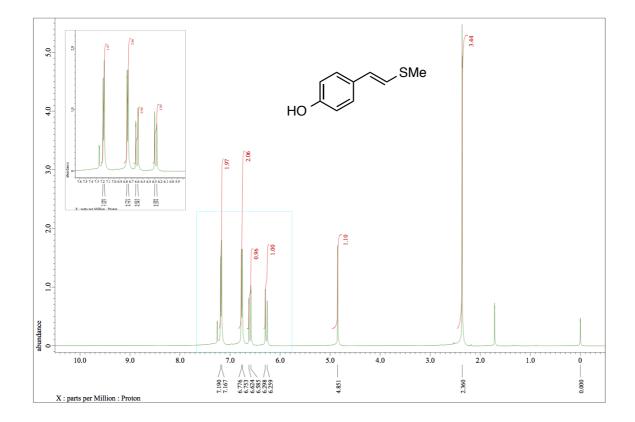

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1e** (CDCl₃)

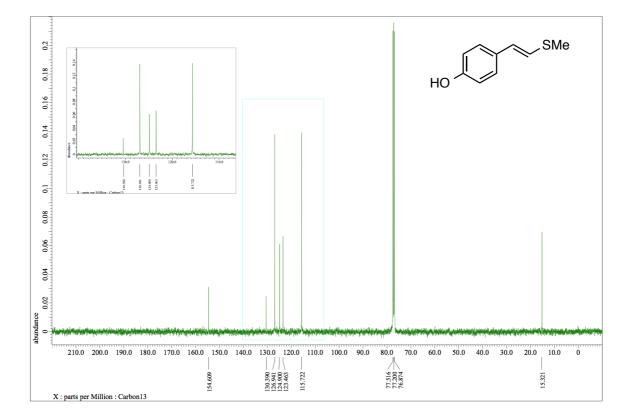


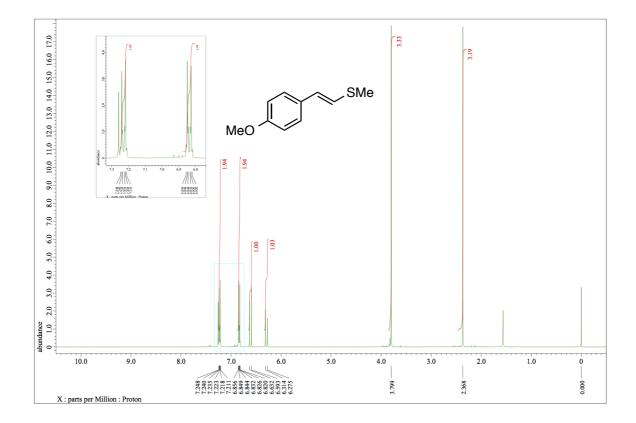


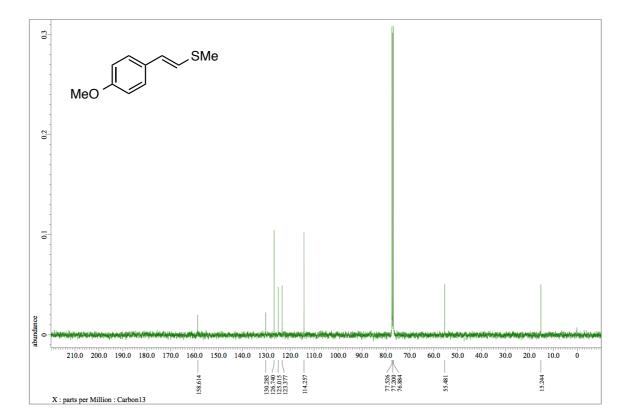

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1f** (CDCl₃)

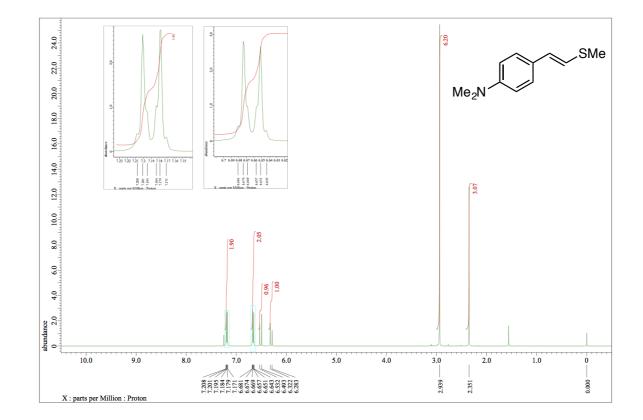


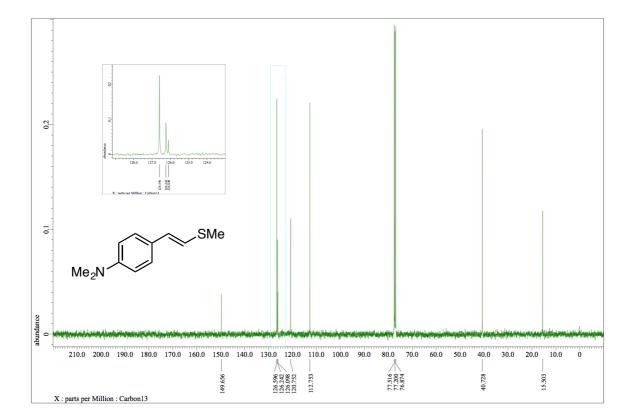


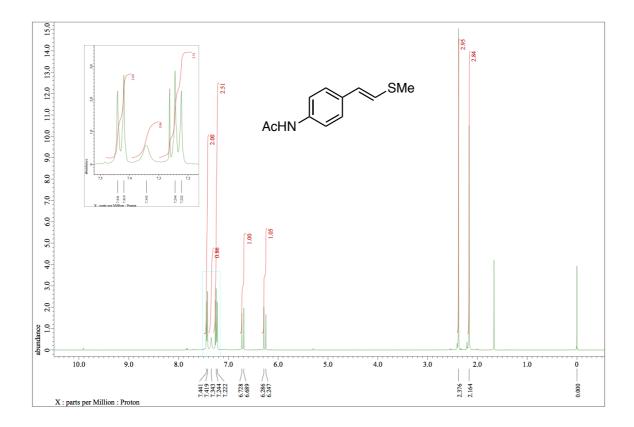



 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 1h (CDCl_3)

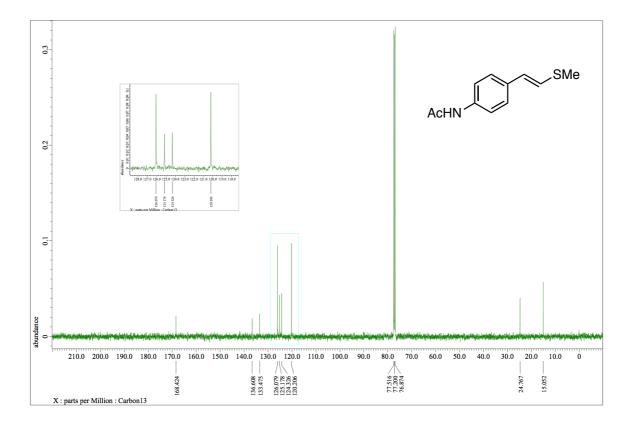


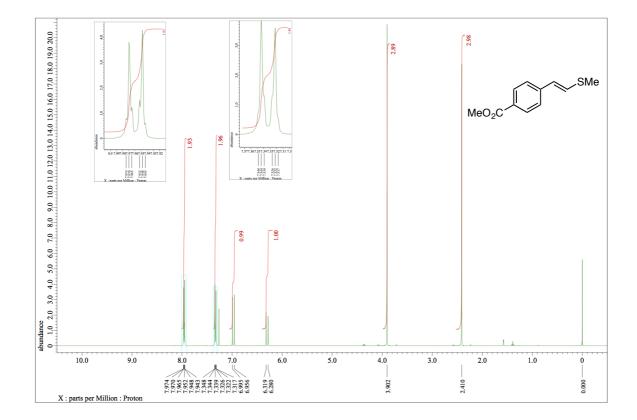

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 1i (CDCl₃)

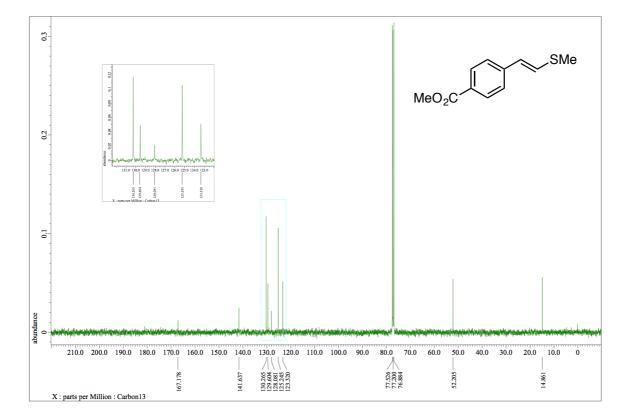


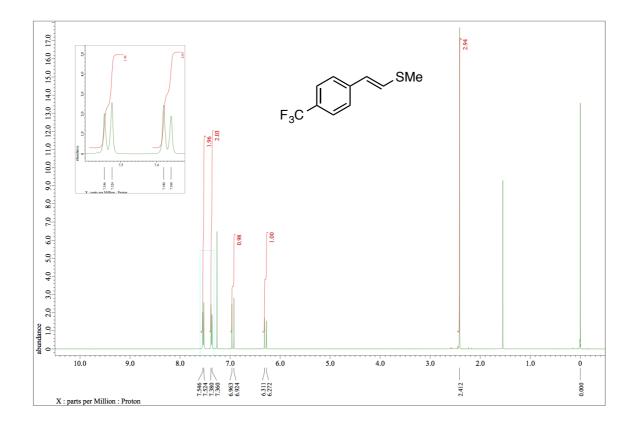


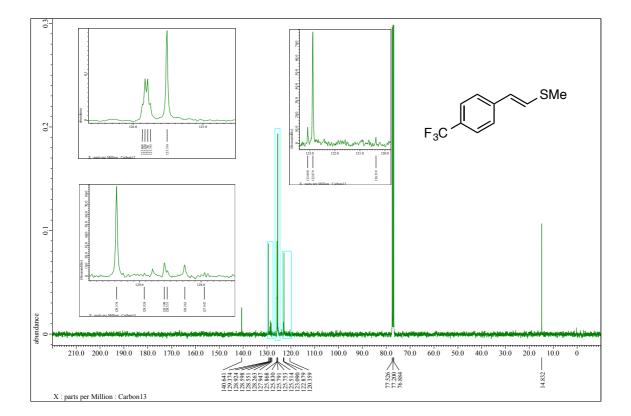
¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1j** (CDCl₃)

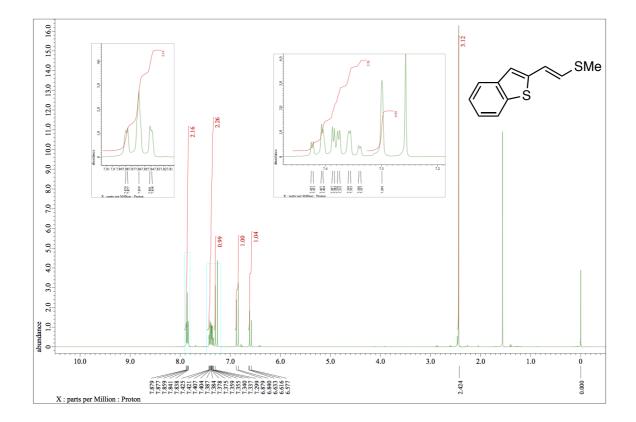


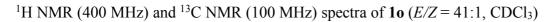

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 1k (CDCl₃)

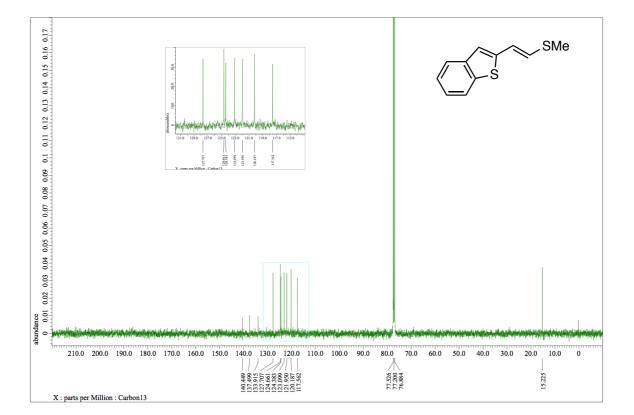


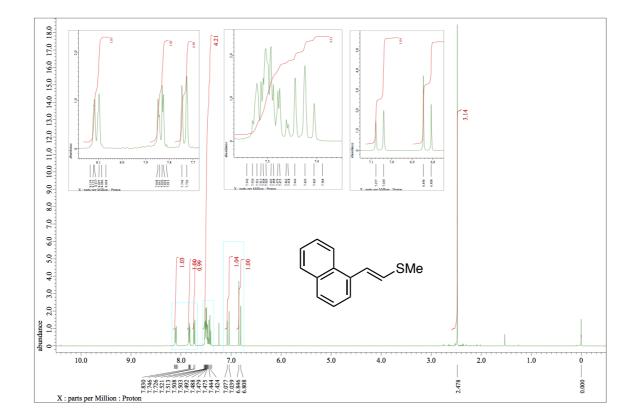

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **11** (CDCl₃)

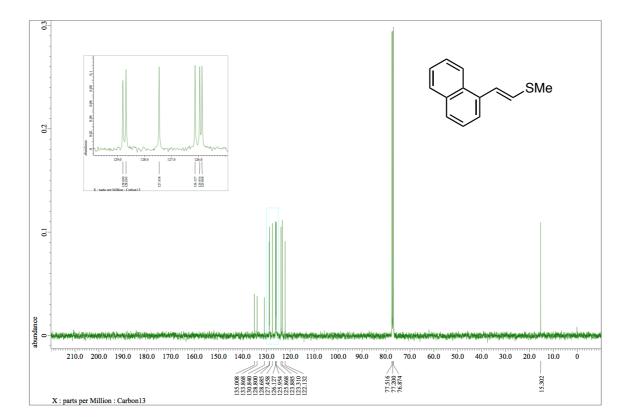


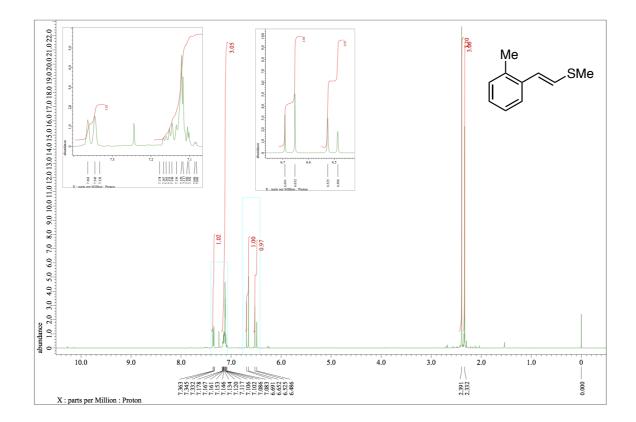

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 1m (CDCl₃)

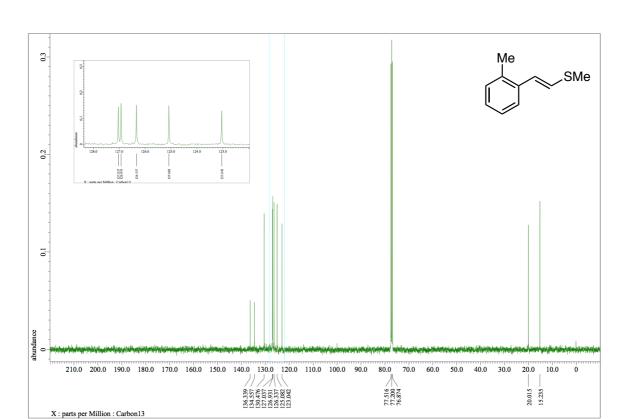


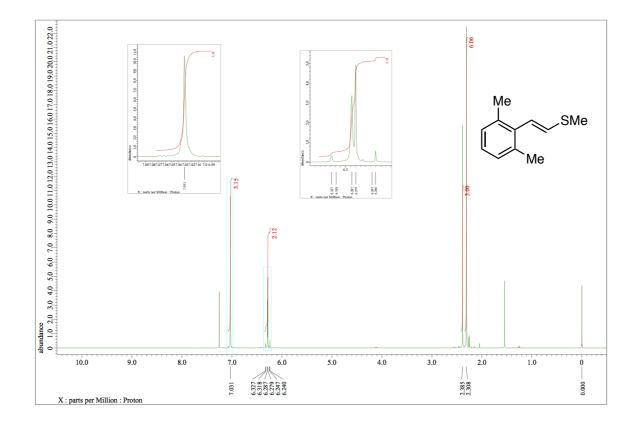


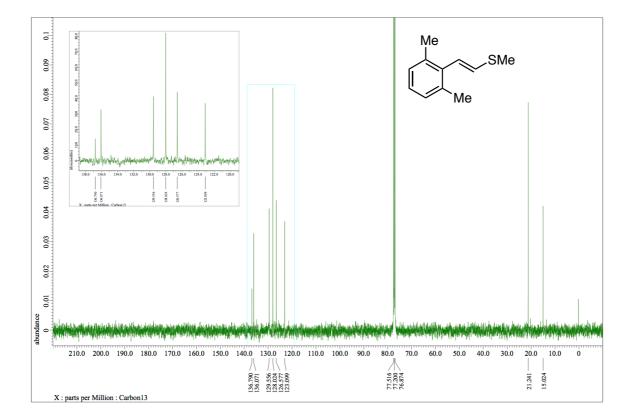

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 1n (CDCl_3)

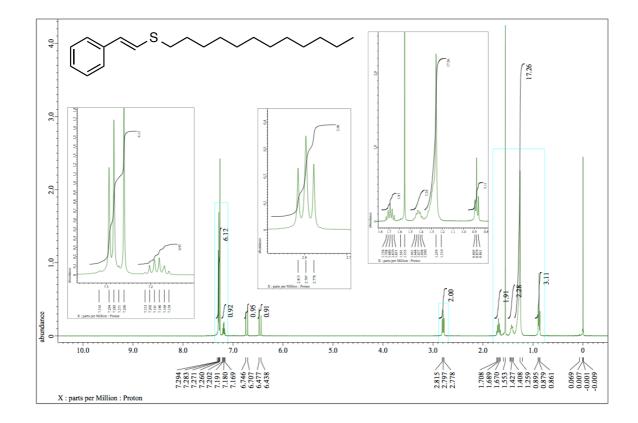




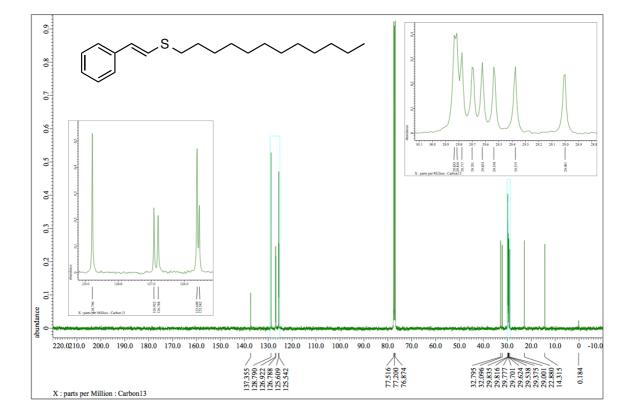



¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1p** (CDCl₃)



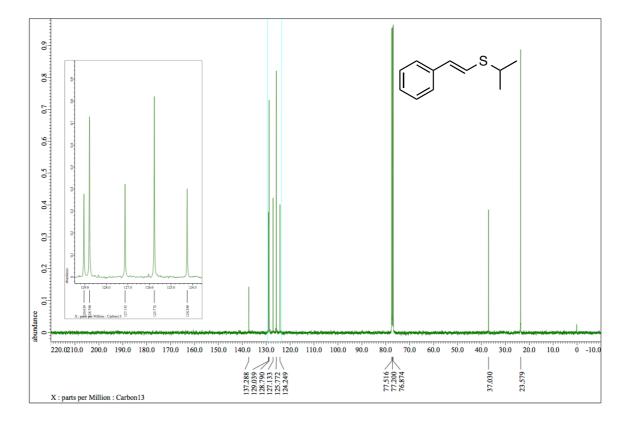


¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1q** (CDCl₃)

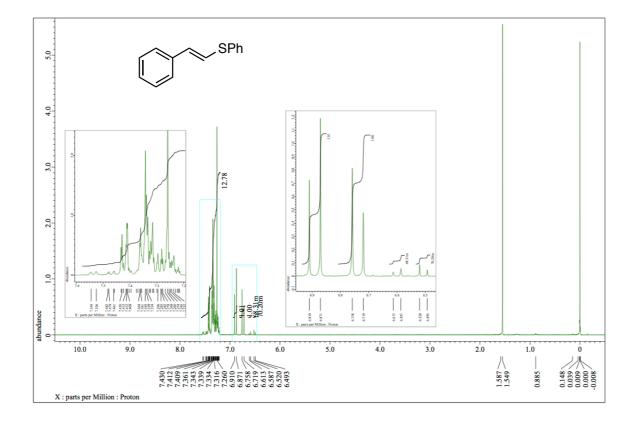


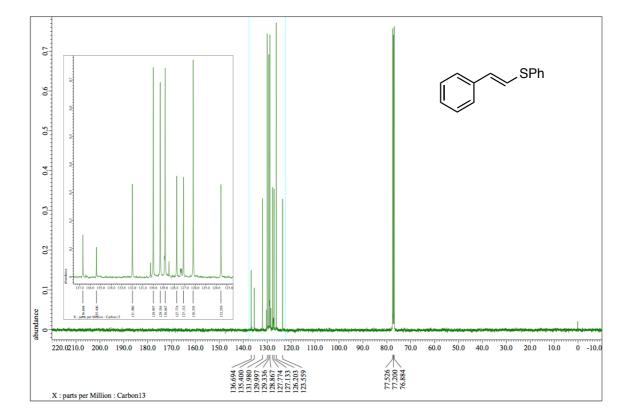


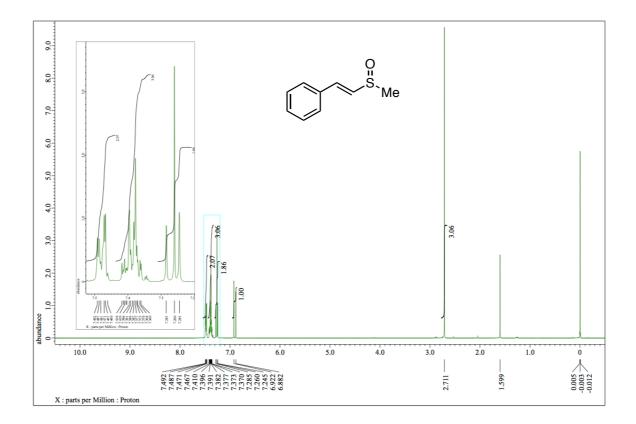
¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **1r** (CDCl₃)



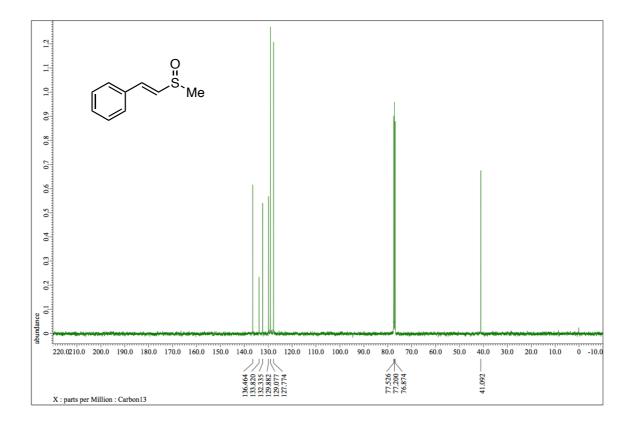
¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **4** (CDCl₃)

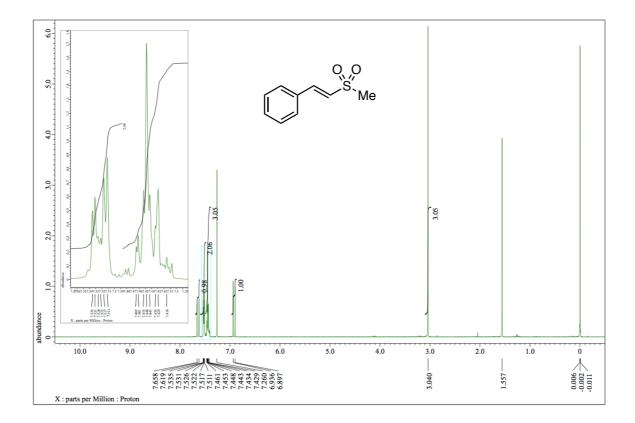


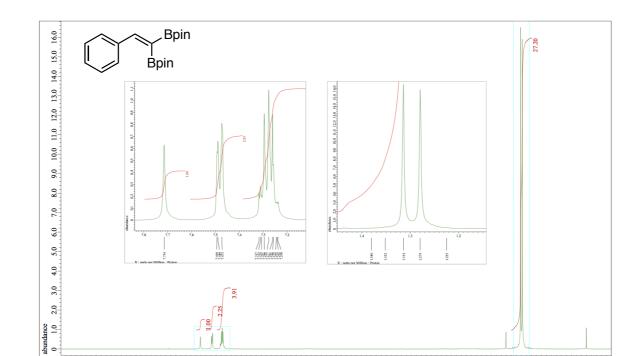

X : parts per Million : Proton



 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of **5** (CDCl_3)




¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **6** (E/Z = 14:1, CDCl₃)



 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of **11** (CDCl_3)

0.0 0, 0 , % 0.8 Me 0.7 0.6 0.5 0.4 <u>6</u>0 0,2 0.1 abundance 140.0 130.0 120.0 110.0 100.0 90.0 70.0 60.0 220.0210.0 200.0 190.0 180.0 170.0 160.0 150.0 80.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 132.239 131.597 129.346 128.752 128.752 126.309 $77.526 \\ 77.200 \\ 76.884 \end{pmatrix}$ 43.468 -144.224 X : parts per Million : Carbon13

10.0

X : parts per Million : Proton

9.0

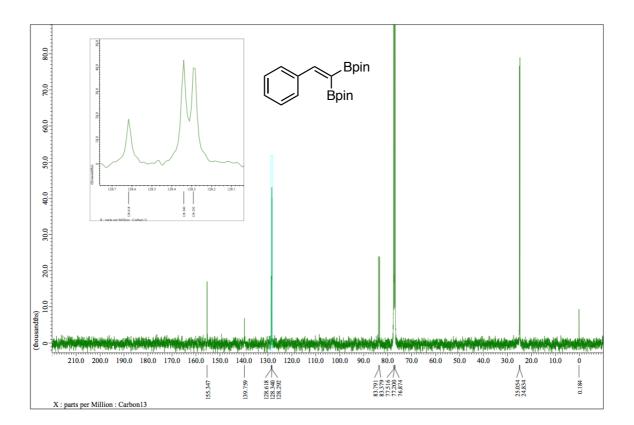
8.0

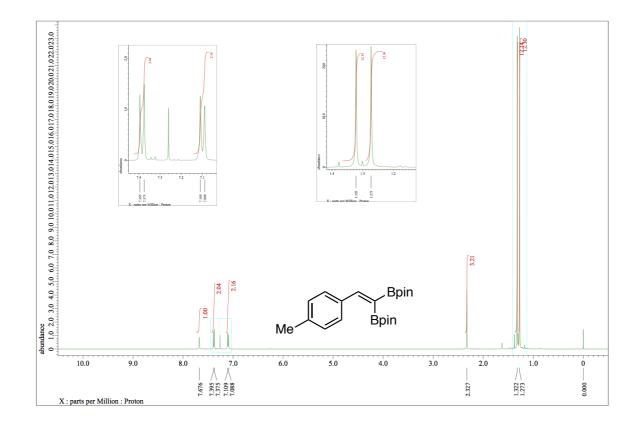
7.0

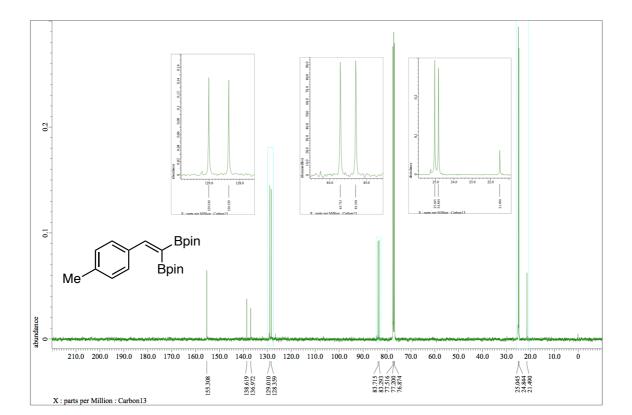
7.714 7.494 7.494 7.473 7.317 7.317 7.307 7.307 7.206 7.275 7.261 7.275 7.261 7.278 7.245 7.245 7.245 6.0

5.0

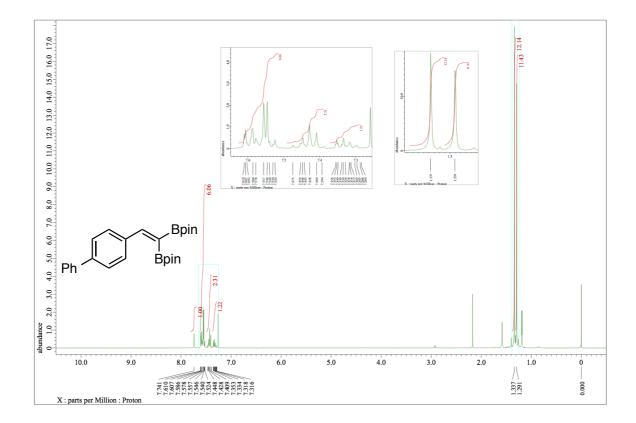
4.0

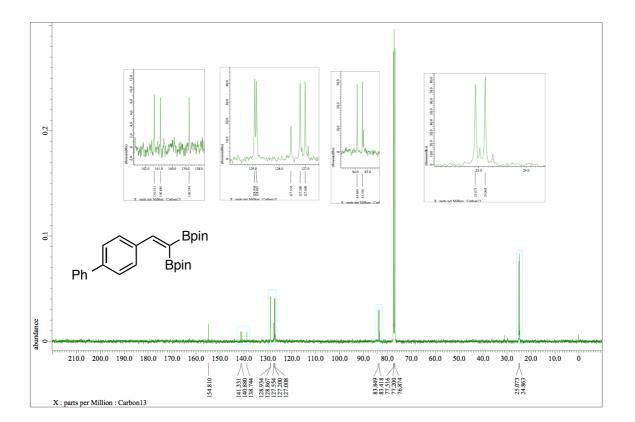

3.0

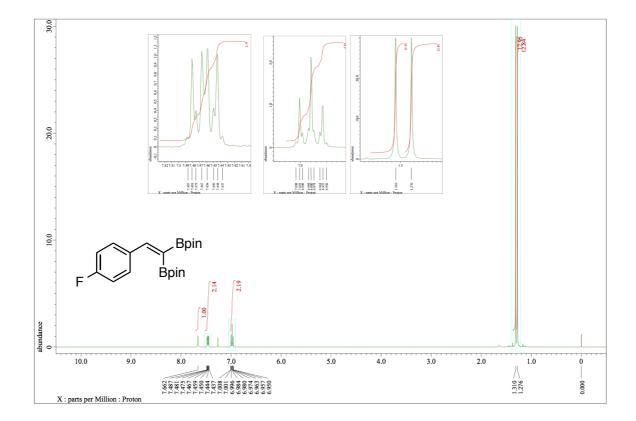

2.0


1.0

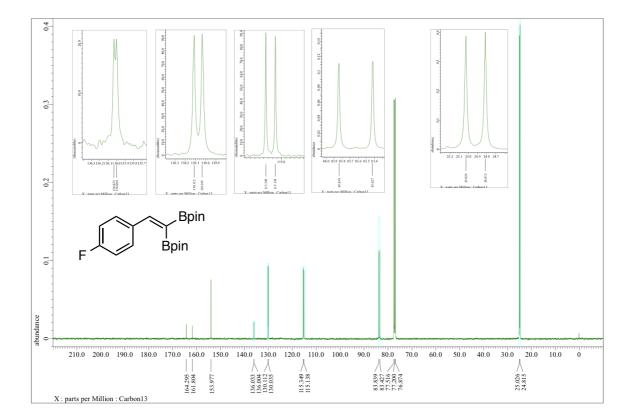
1.200 1.380 1.352 1.279 1.279 ò

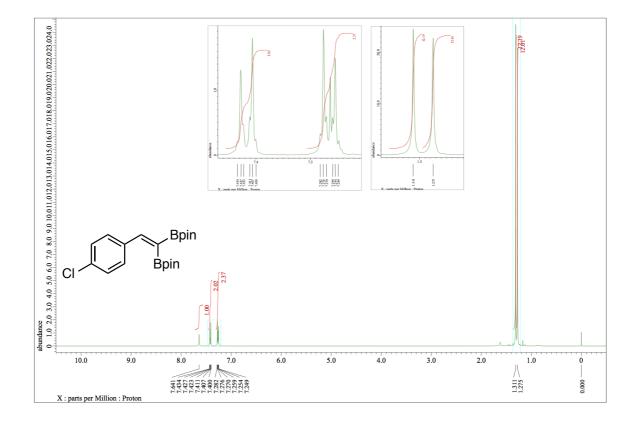

0.000

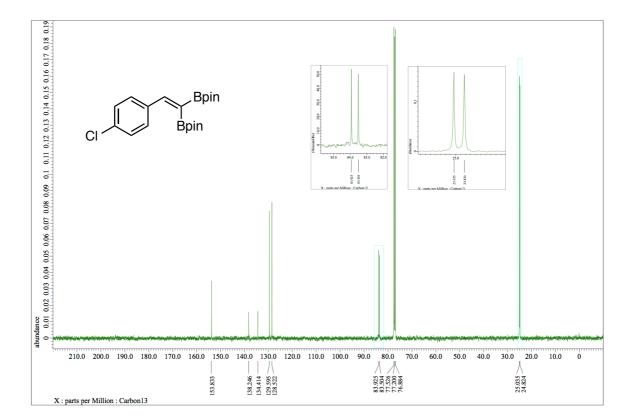


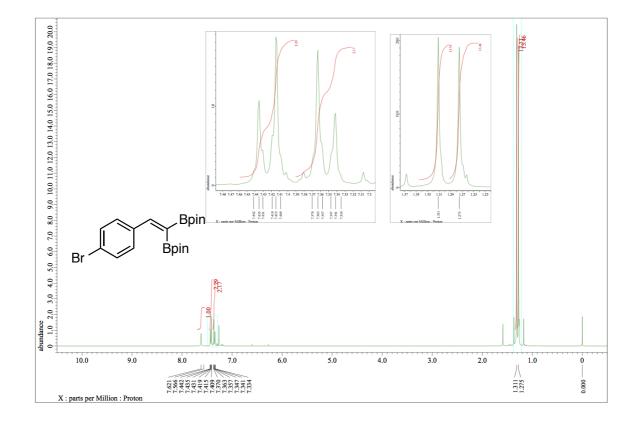


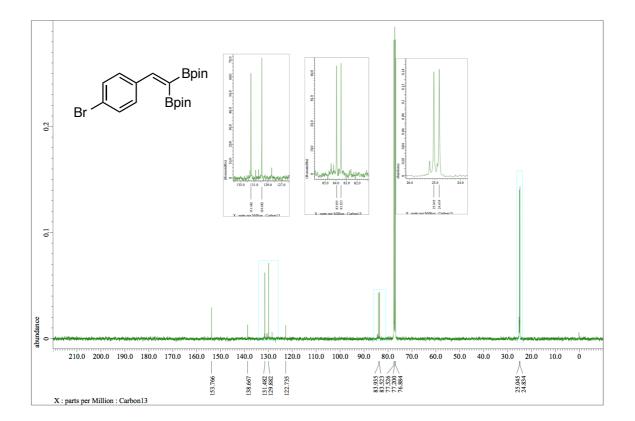
¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3b** (CDCl₃)

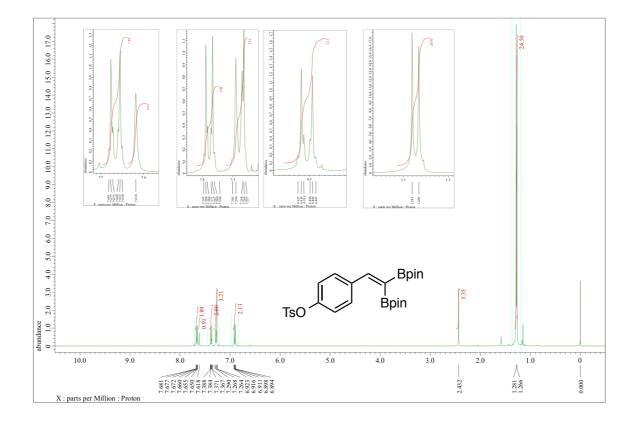


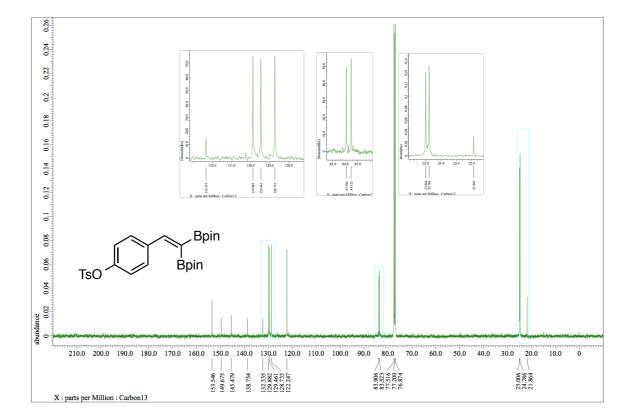


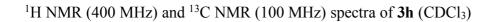


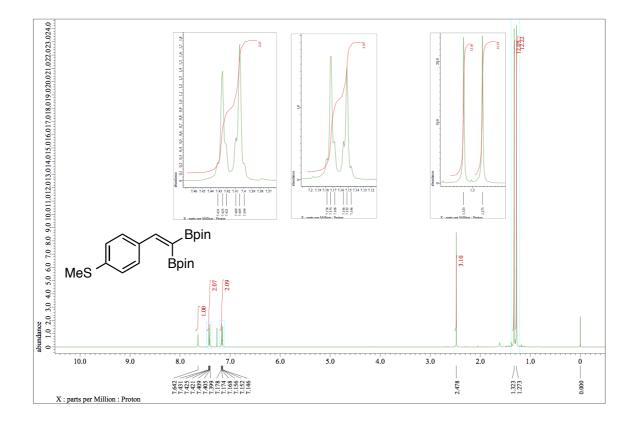

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of **3d** (CDCl₃)

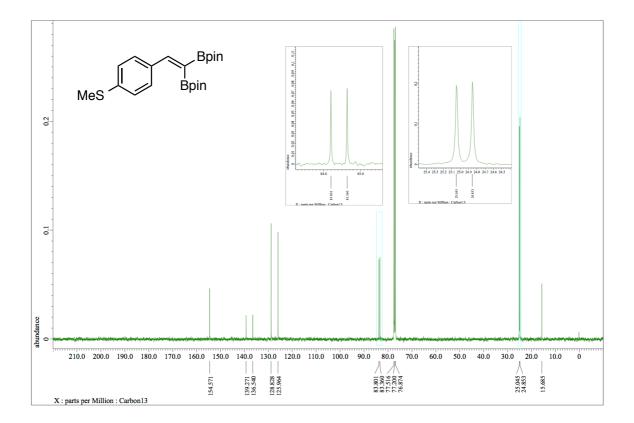


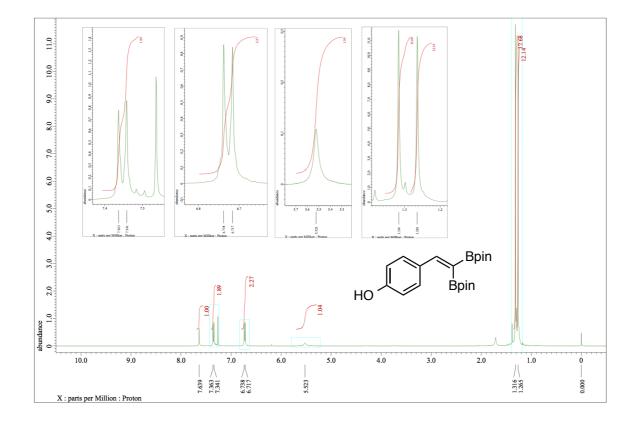

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3e** (CDCl₃)

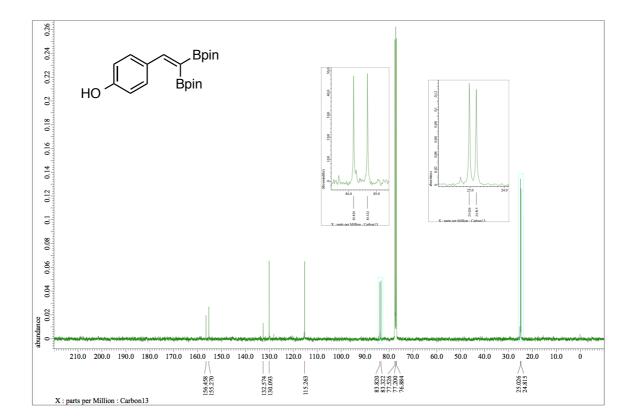


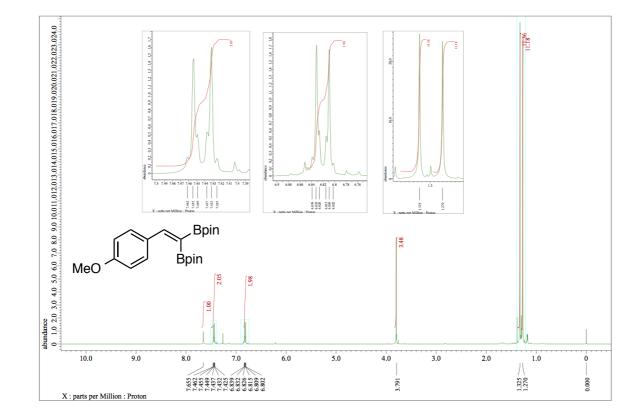

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3f** (CDCl₃)

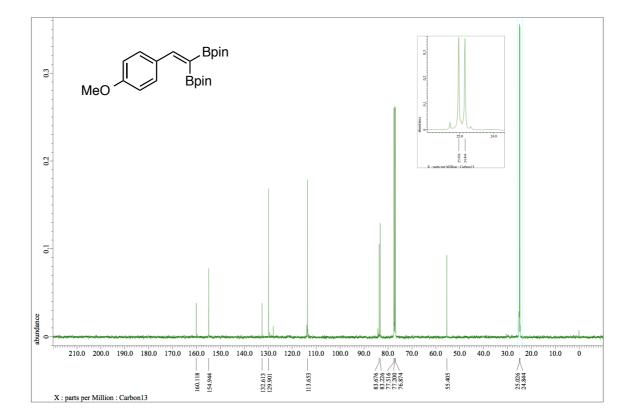


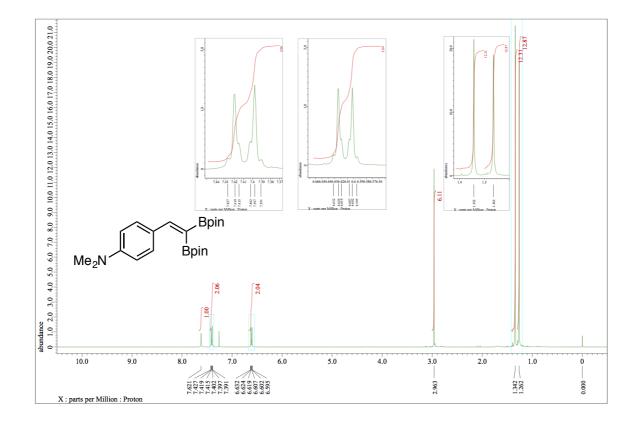


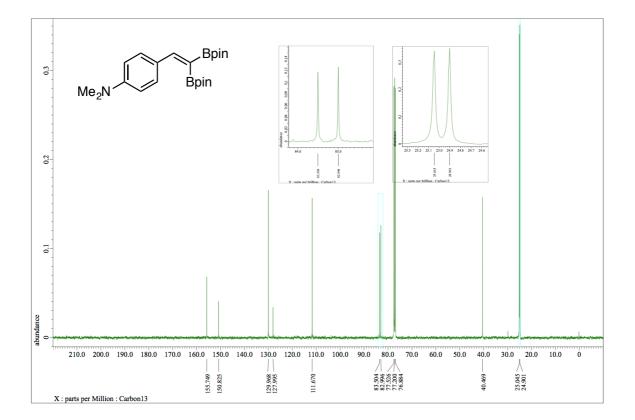


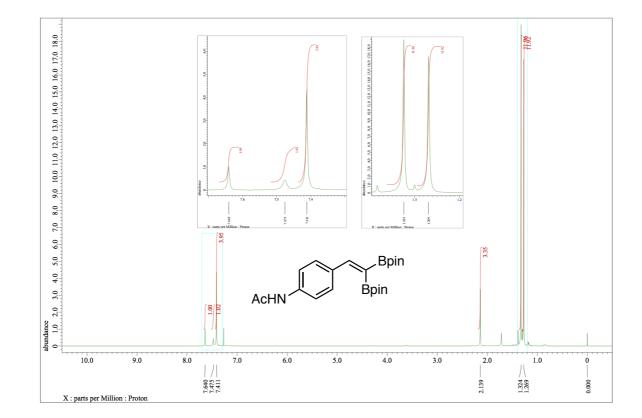


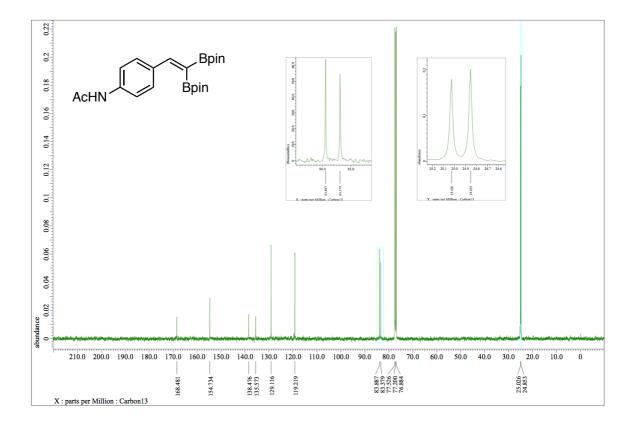


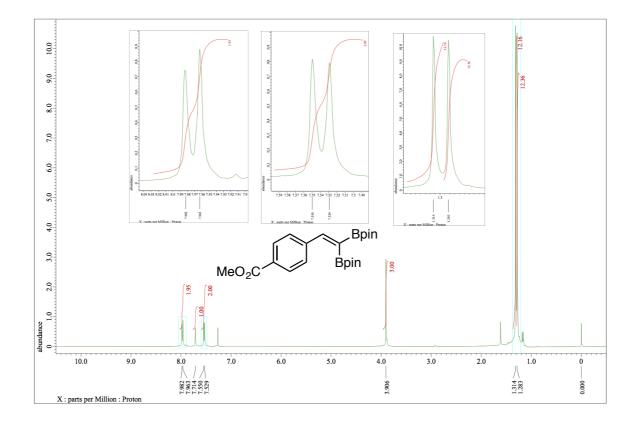


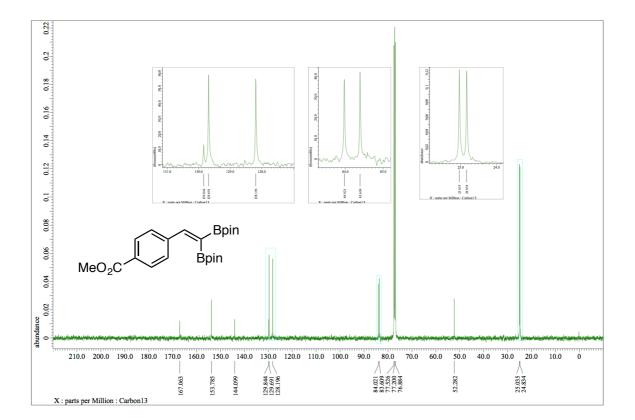

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3i** (CDCl₃)

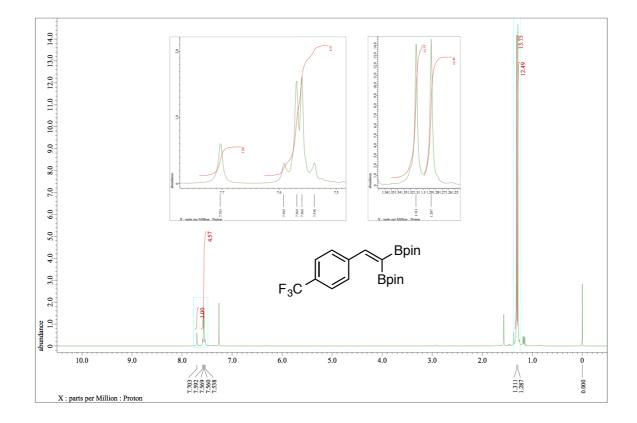


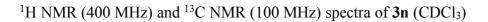

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3j** (CDCl₃)

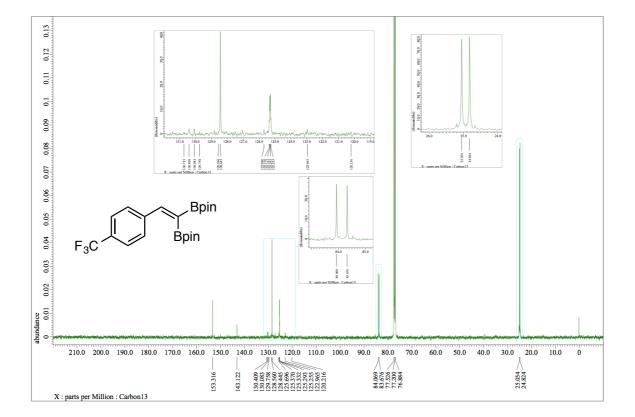


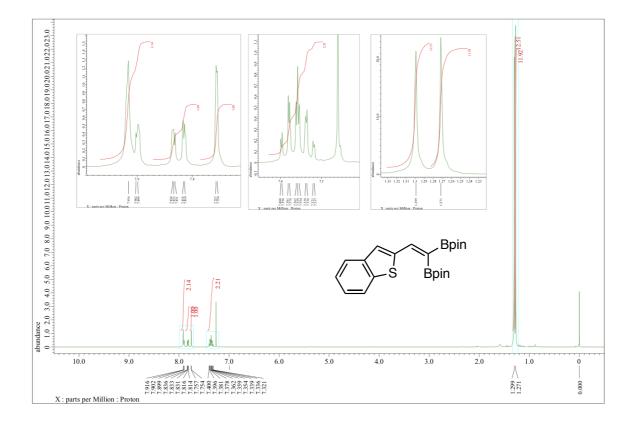

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3k** (CDCl₃)

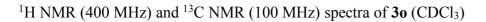


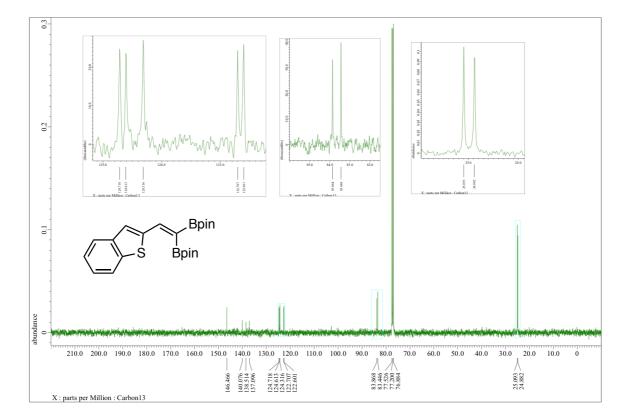


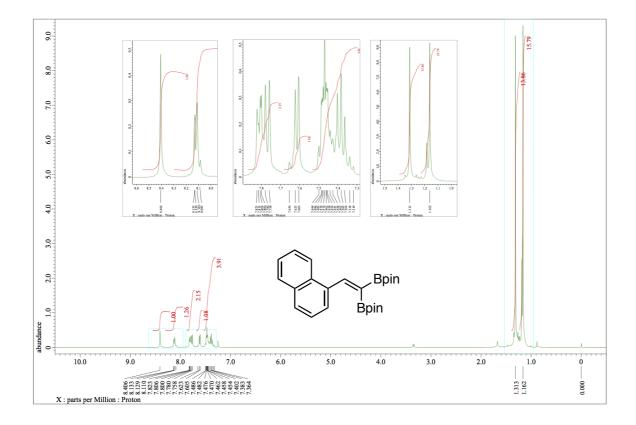


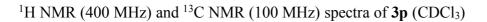


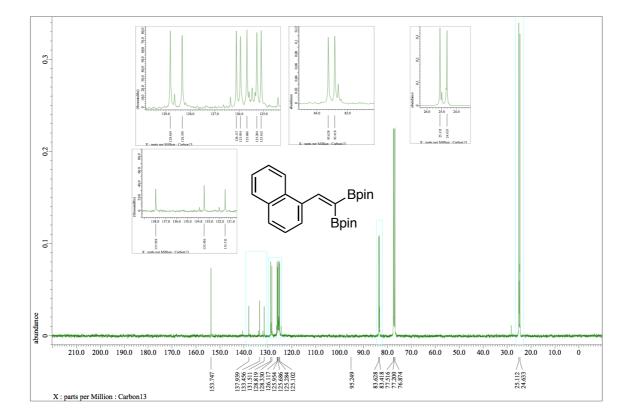

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3m** (CDCl₃)

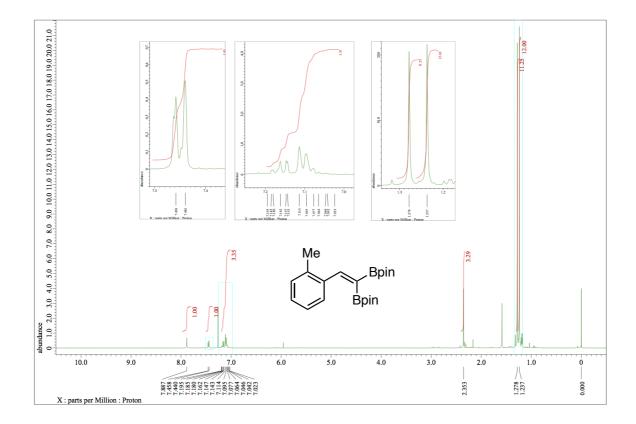


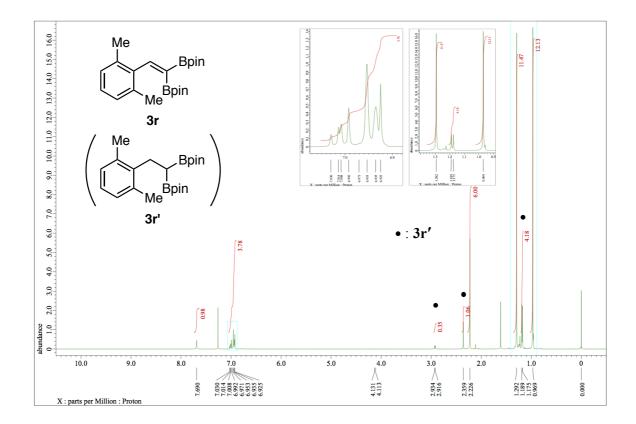


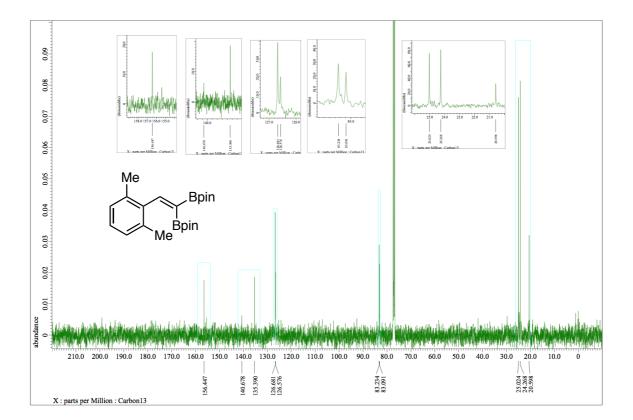












abundance 0 001 002 003 004 005 006 007 008 009 01 011 012 013 014 015 016 017 018 019 02 83.0 84.0 126.0 129.0 127,861 83.512 28.474 25.648 -Мe Bpin . Bpin 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 10.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 0 // ΚŤ 139.395 -136.502 -129.997 -128.474 -127.861 -125.648 83.686 83.312 77.516 77.200 76.874 154.369 25.073 24.738 19.967 X : parts per Million : Carbon13

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of **3q** (CDCl₃)

