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1. Capacitance of RC circuit in cyclic voltammetry:

We consider the RC circuit shown in figure 2 that includes a potentiostat able to maintain an applied linear

potential ramp. During the first CV scan between E. and E ., at a scan rate v, the current is:

f
c |1 ! col1 i
i=Cv|ll-exp| ——||=C v|1—-exp| — , 1
f P R e s PR C
u f u f
E, .
and the capacitance C , calculated according to I " LaE |/ AE
A%
E.
c Efi'dE /(E E) Efc 1 E5 e /(E E)
= L — = — X — . .
E; Y ! l E, ! ’ VRqu / l
Hence:
C v VRC .
C _l_v l_eXP[—T] with Vec =(Ef—El.)/Rqu and CmaX :Cf
max RC

What is now the expression of the capacitance for successive CVs? We first derive the expression of the current at the scan

limits (i.e:at E=E, and E =E_, or equivalently at £ =(2n+1)

; and t=(2n+2)tf (with n>0), where ¢ is the

by 1

time corresponding to a forward or reverse scan, i.e. : ¢ = (E f— Ei)/" for successive CVs. We use here a recurrence

reasoning which consists in establishing expressions at cycle #n+1 from expression of cycle #n also showing that the
considered expressions are valid at the initial cycle considered, here CV #2.

At CV #1
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we have shown that the current of the forward scan is:

t
i= Cfv I—ex {#} and thus the current at the end of the forward scan is: I = C.vi1- exp[ / J .

u f / Ru Cf
. L . q . dq di i %
On the reverse scan, the applied potential is £ = v(2t - t) ,and we have: E=R i+——, i =—, thus —+ =——
/ u dt d RC R
f u f u
t
The solution of this differential equation is: i =—-C v+ Aexp| ———— | with 4 a constant and at ¢ =¢ ., we have:

f A
u-f

t t t
i =—C v+ Aexp| — A =C_ v|l—exp|— A ,then: 4=2C ,vexp L —C ,v. Hence, the current at the end
1 f R.C, f R.C, f RC, Y

tf th
of the first cycle is: i, = —Cv|1-2exp| — +exp| —
y ) p RC p

u f Rqu

We now assume that the current at the end of the forward scan and at the end of the CV #n (rn>1) are:

2n—2 jt
: _ J=1 S
b —Cfv—2Cfv E (-1) exp[R c J (S1)
2n—1 .
. -1 —Jty
iy ==Cpv+2C v E (-1)’ " exp 2 (S2)
= v
At CV #2
. L . q . dq di i v
During the forward scan, the potential is £ = v(t—2[ ) and we have E =R i+——; i =— hence: —+ =—
f “oc, dt d RC, R

We obtain: i = C v+ Bexp L with B a constant.
! RC
u_f
At t=2t, we have:

tf th 2tf 2tf tf
i, =—Cv|1-2exp| - +exp| — =C v+ Bexp| — hence: B =-2C .v|exp —exp
2 RC, RC, / RC S RC, RC,
u f u_ f u f u_f u_f

t 2t
Thus, =31;: Iy = Cfv—2C v exp[—R ’; }—exp[— / ] which verifies equation (S1) with n= 2

/ u f Rqu
On the reverse scan, the potential is: £ = v(4t T t) and we have: E = Rui +Ci and [ = ? ,
’ t
thus di .
dt RC R
u f u
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t
We obtain: i =-C v+ H exp| ———— | with H a constant.
f RC
u f
At t=3t, we have:

tf 2tf 3tf
. =C v-2C ,v|exp| — —exp| — =-C v+Hexp| - , hence:
EIR AN A R RC, PR, 7Y P "%Rc

f u-f u-f

3l‘f tf th
=2C .v|ex : +ex : —ex : and therefore, at t=4t; we have:
T e e e GO s

WCr WCr R.C;

tf 2tf Stf
i,=—C v+2C v|exp| — —exp| — +exp| — which verifies equation (S2) with n= 2
4 / / RC, RC, Cr

At CV # n+1

We now show expressions (S1) and (S2) are valid at CV #n+1.

During the forward scan, the potential is: £ = v(t —2nt f) and we have £ =R i +Ci and i = 4q hence:
f

di i v

“ .

dt RC ’ R

Resolution of this differential equation leads to:

i=C_ v+Dexp . with D a constant.

f RC
u f

At t=2nt;, we have:

2ntf 2ntf
i, =C,v+Dexp|— hence: Dz(i -C v)exp
2n f RC 2n f RC
uf uf

At t=2n+1)t, we have:

2n +1 t
byl = CfV + DCXP{— J thus i, = Cfv + ( b, ~ CfV)eXp{— 7 2 J Therefore introducing equation (S2):

u_f
2n
(j+1)z, , —jt,
. Sl _ _1/1 S/
i, . i [ J exp[ 2 C =Cv=2Cv E (-1)" " exp 2
1 = uCr

This shows that the expression of Iyl is valid for any integer value of n >1.

di .
On the reverse scan, the potential is: £ = v(2nt —t) and we have £ =R i+i and i = ﬁ, thus a, —L.
/ woC dt dt RC R
f uf u
t
Resolution of this differential equation leads to: i =—-C a + Gexp| ———— | with G a constant.
R ’
(2n+1)tf (2n+1)tf
At t=(2n+1)ts we have: i, = —Cfv+ Gexp —ﬁ , thus: G = (Cfv+l2 +1)eXP ﬁ
u u
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2n+2)t,
At t=(2n+2)t;, we have: i, = —Cfv +Gexp| ——————

Rqu
(2n+1)t, (2n+2)1, {
thus i, =—Cfv+(Cfv+i2n+l)exp ﬁ exp Rc =—Cfv+(Cfv+i2n+1)exp “RC

Thus, introducing equation (S1):

0 _(j+1)t 2n+1 —jt
— t j . Jo1 /
i s _—Cfv+2Cfv CXPEWJ-F Z(—l) exp[ RC J ——Cfv+2Cfv Z(—l) exp{RuC J

u f j=1 f Jj=1

This shows that the expression of I
n+2

We can now calculate the capacitance for any cycle taking into account the expression of the forward current at the

is valid for any integer value of n >1.

corresponding cycle #n+1, n>1:

2nt ; & i —jt,
l(t)szer(lzn —Cfv)exp e exp YN with b, :—Cfv+2Cfv Z(—l) exp RC , hence:

uf uf = uf
2n—1
. —jt 2nt
() — _ _ e S f ¢
z(t)—Cfv 2Cfv 1 E (-1) exp{RC ] exp[RC Jexp{ T ]
= u_f u_f u f
Therefore:
E 2n—1 .
E ! . —jt 2nt
f i 1-2| 1= -1 Jj-1 S S _ t E
I c " L Z( f e . J||"P R, TP R,
Cn+1 — E / — ! J=
C, _ _
r (E-E) (5,5

c | _
leading to: 2% =1-2| 1— E (-1)" exp
C R.C
f fu

t
P
R C.v l—exp{— - }
2n-1 . u f

J=1

2n-1

C v . 14
and thus:”—”zl—2L|:1—exp(—£H E (-1) exp(—jﬂl
C v v v

f RC

0

. v 1
taking into account: E (1) exp| —j RC =
v VRC]

j=0 1+exp[—
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we finally obtain:

c l—exp[—RC]
1% vV
© -2 - tanh( RC ;

J,With CmaX =C
max Yre | +exp£_ VRCJ YrC v

v

2. Capacitive charge storage in nanopores and diffuse layer
We consider the porous structure shown in figure S1.
The conductive material has an homogeneous Galvani potential @, . At a given position in the macropore (from the

underlying electrode), the potential in the nanopores is assumed to be constant (@np ) while the potential in the macropore

is not constant due to the development of a diffuse layer.

The accumulated charge in the conductive material oy is equal to the sum of the charge accumulated in the nanopores and

in the diffuse layer in the macropore:

© diffuse layer
porous

electrode

.

mesopore

nanopore

Fig. S1. Schematic representation of the bi-hierarchical structure with macropores and nanopores.

oy =0, +0 dif Hence the differential capacitance:

do do do,

C = M _ nano dif
d
do,  do,  do,,
. 40
and, from the Gouy-Chapman model of the diffuse layer: ~C 1l
do,,
Thus: C =%+C
d dl
do,,
. . O- . . . . . .
Then, considering C vt . ¢ =C +C,, showing that the differential capacitance is equivalent to two
nano dCDM d nano dl

capacitances in parallel, one describing the nanopores and the other the double layer in the macropores.

3. Transmission line model
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Working Reference
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cdx cdx ; cdx .
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0 4 x

Fig.S2. Transmission line model.

Glossary of symbols
c: distributed capacitance per unit of surface area of the electrode and unit of thickness of the film, i.e., a capacitance per

unit of volume of the film.
d 1 thickness of the film.

i: current.
r : radius of a pore.
t: time.

ty= df2 (pp/yp)c: film time constant.

x: distance from the (planar) base electrode.
Cf = S
Ej, E ;: initial and final potentials in cyclic voltammetry.

F: Faraday.
Ip Ip,and I:current densities (currents per working electrode unit surface area Sgeom) in solid parts of the film, pores

geomCd y - film capacitance.

and solution, respectively.
R: radius of the electrode

Ppdy

R : film resistance.

=
7 PSgeom
Ry : solution resistance between the working electrode and the reference electrode.

R :uncompensated solution resistance between the working electrode and the reference electrode.
S oo - Surface area of the base electrode.

T: absolute temperature.
V: scan rate.
yp: fraction of the base electrode surface that are covered by the pores.

pp - resistivity of the solution in the pores.
$wE. RE. B and p * POtential at the working electrode, the reference electrode, in the bulk solid parts of the film and in the

pores, respectively.
Definition of the dimensionless variables and parameters
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x t . Ip . Ip I. Pp Pp

Y= T=——s Yp=—L Yp=— Y=Y¥Ypty¥Yyp=—, Pp = =- ;
df tf I/ Il I/ ISgeom th /Cf lXRf
¢ dp . R
TR p
geomxf f Ix f dfpip
yPSgeom

Governing equations

We are looking for the time-dependence of the potential between the working and reference electrode when a constant

current is applied from =0, recalling that the potential across the film g, (0,7)— ¢p (d IS t) is equal to the potential difference

between working electrode and reference electrode, @y — gy according to (assuming an ideal potentiostat):

o5 (O,Z) = ¢y and gp (x = dfat) =Pre + SgeomRu[([) :
The definition of R, deserves a particular attention. With no attempt to compensate ohmic drop effect by means of positive

feedback, R, = Rg. When positive feedback is activated, part or total of Rg may be compensated.

The potential differences and the current densities obey the following set of partial derivative equation accompanied by a
series of initial and boundary conditions, at the two boundaries of the film, i.e., at the electrode (x =0) and at the film

solution interface (x=d ).

No ohmic drop in the bulk material: ¢ (x,7) = ¢z (0,¢) = dyg (1S)
Ohmic drop in the pores: %9p L Pr g p=0 (29)
x  yp
N b —
Capacitance charging at the pores' walls Olp =- g =c (¢B ¢P) (35)
ox ox ot
Conservation of fluxes throughout the system: /p(x,t)+ 15 (x,t)=1(¢) 4S)

The potential difference ¢y — @pp 1s imposed by the instrument. In case of, e.g., an oxidation the linear potential scanning:

dwEe —dre = E = E; +vt, E; being the starting potential and v the scan rate, leads to:
PB (O’Z)_¢p (df’t) =dwE —PRE _(SgeomRu)I =E; +Vt—(SgeomRu )[

and therefore:

5[(153 (0.6)- ¢, (df’t)] (s oL d (dwe —dre)

ot (SR, )5 dt
Initial conditions:

t=0:4p(x,0)= g, #p(x,0)=dre, Ig(x,0)+Ip(x,t)=1
Boundary conditions:
x=0: ¢p(0,t)=dyp. %(o,t)zo, Ip(0,6)=0, I5(0,)=1

Ox
. Odp
x= df “dp (df’t)_¢RE =Ryi= (SgeomRu) ] _x
Dimensionless formulation
The advantage of a dimensionless formulation of the problem is that it minimizes the number of effective parameters from
which the system depends, as these effective parameters are each a combination of several experimental parameters.

= (59)

(dr.t)=0, 15(d.t)=0, 1p(dsut)=1

Space: y = di time: 7 = L where ty= df2 ['D—PJC =R,Cy is the time constant of the film.

f y rp
Potentials: ¢p = P _ ¥ ; op = Pp __fp
ISgeomxtf/Cf ZXRJ( ISgeothf/Cf ZXRf
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Currents densities:
Ip Iy

=—, =—, = + = 1
Yp 7 ¥ 7 Y=ypt+t¥p
. . R,
Uncompensated solution resistance: 3, = -
P
7PSge0m
Thus, in dimensionless terms:
95 _,, (1°S)
oy
Opp )
P yp=0 2°s)
Oy
oy p :_a‘//B :a(¢3_¢P) (3°S)
oy oy or
wp(»,0)+yp(y,7)=y(r) 4’S)

Initial conditions:

7=0: ¢p (1,0)=rg, 95 (7.0)=opg, vp(y,7)=1

Boundary conditions:

0
1=0: 93 (0,7) =@y, aL;(O,r)=O, wp(0,7)=0, yp(0,7)=y

0
y=1: ain(l,r)=o, wp(1,7)=0, wp(L7)=y

o[ 05(0.7) -9, (L7)]

Potential scanning:
ot

oy
+p,—=1
Bu o7

Resolution:

Derivation of limiting behaviors of interest is greatly eased by the passage into the Laplace transform space as it is the case
for all problems relative to electrical circuit and electronic devices. Any function f{7) is thus replaced by its Laplace
transform:

o0
f(s)= I f(r)exp (—ST) dt , where s is the Laplace variable corresponding to the dimensionless time variable z. The main

0
interest of Laplace transformation is that differentiation and integration are replaced by multiplication and division by the
Laplace variable, s, respectively. The set of the (1S') — (5S') equations thus become (1S"') — (5S™) in the Laplace space.
a¢B =0 (1S|u)
oy

OPp i, =0 (28™)
y

oyp _O¥p _ -~
—_—_ ==y ¢)B —¢P (3Sm)
oy )

Vp(3,8)+yp(r,5)=y(s)= é (48™)

Differentiation of equations (1S"") and (2S"") leads to:
)
B _ 0,
0y
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O’pp 0w 2,
(DZP +%=O,andfr0m(zsm)3 66—¢;+S(¢B_¢P):O

oy v

leading by subtraction to:

O (@s—p)

#—S((PB ~Pp)=0 (58™)

y

Integration of equation (5S™') leads to:

75 —@p = Aexp( s )+ Bexp(—ys) (65™)
and thus, in particular, to:

((ﬁB - @p )(O,s) =A+B,ie., ¢p (O,s) - @p (O,s) =A+B (7S8™)

(75 —p)(1,5)= 4 exp(JE) +B exp(—ﬁ) Jie. @ (1,s)=@p (1,s) = dexp (JE) + Bexp (—JE) (8S™)
We are looking for the dimensionless current-time response:
olep(0.7)-0, (L7)] oy
+p4,—=1
or or

In the Laplace space:

_ _ _ 1
s[(oB (0,s)-@p (0,S):| +sBW = N
L
s [2()+ ]
after introduction of the Laplace dimensionless impedance of the film
2(s) = 25 (0,s) :gop (0,s)

(9SH|)

V= (10S™)

(1 ISHV)

This is not a Laplace transform, of any function of 7, unlike the @ s and the i s. It is simply a function of's. The expression

of z(s) as a function of the various parameters is derived at the end of this section.:

IS B

Js tanh (\/E)

showing that the ensuing dimensionless current response, is:
1

W =

20 L
s tanh (\/E )

The following limiting situations of interest are reached when:

a) s — 0, corresponding to asymptotic behavior at large values of 7. Then:

N

+ B,

1 s—0 1 _ g0 1. . .. T—0
— therefore: ¥ ————— i.e., in the original space: v —————1
tanh (\/E ) Js

N

i.e., a plateau of unity height is asymptotically reached at long times.

b) s >, 7 — 0 in the original space, embodies the limiting behavior prevailing at the initial stages of the current-time
responses

Then: z(s)&>L

Js

_ 1 1
The Laplace dimensionless current then becomes: = o

Sz[z(s)+ﬂu] S2|:\/l§+ﬂu:|
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The intrinsic properties of the film may be obtained from a situation where the resistance of the solution outside the film
would be totally compensated by means of a hypothetically perfect positive feedback resistance compensation. Then, in the
Laplace plane, this characteristic dimensionless current-time response is:

— S§—>0 1 . . .. §—>00 2
———>—— i.e,, in the original place ——)—\/;
4 B0 o s g p 4 0 ~

o —0p)(1,s
Determination of A and B , i.e. of a z(s) = M

Determination of 4 and B as a function of ¥(s) from equations (1S"") and (2S""):

% — 0’ aﬂ +
oy oy

o(gp—op) _

oy

We already know from equation (5S"') that:

Pg—0p = AGXP(J’\/;)+BCXP(—Y\/§)

It follows that:

\/;(Aexp(y\/;)—Bexp(—y\/E))—Wp =0

This equation is applied at each film boundaries:

y=0:s(4-B)=0,

y=1: \/E(Aexp(\/;)—Bexp(—x/;))—Wz 0

from which:

A4=B=-2L !

V5 exp(—5)-exp(45)

The next step consists in the derivation of ¢p (O,s) - p (O,s) as a function of 4 and B so to obtain z(s) according to

yp=0

(138"!)

equation (11S™).
We have:

?5(Ls)~pg (0,5)=0

We also have: yp (y) = \/;[Aexp(y\/;)—BeXp(—y\/;)J

%+ wp =0,
e -y (5 dexp(5) - Bexp (-5 ]

(501, =7 {[ 430 15 )+ Bero( 535 |
?p (1,5)—(513 (O,S) = M{[AGXP(\/E)-‘FBGXP(—\/E) —(A+B)J}

1+ (rp /rg )
We are looking now for an expression of the potential difference ¢p (O, s) - Qp (l,s) in the dimensionless Laplace space that
is going to serve in the expression of the dimensionless Laplace impedance of equation (8S""). We have::
95 (0,5)=@p (1,5) =75 (0,5)—@p (0,5)+ @p (0,5) - @p (,5)
Recalling that:
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(lvs)_(ﬁB (0, )

()= {[AGXP )+ Bexp(—s)-(4+5) ]}
Pp (O,S) Op (0 ) A+

op (1,s)—@p (1,S)=A6Xp(\/;)+3exp(_\/§)

It follows that:

95 (0,5)—@p (Ls) =25 (0,5)—@p (0,5) + @p (0,5) - @p (L,s),

Sl

S |

25 (0,5)—@p (Ls) = A+B+{[Aexp(\/§)+Bexp(—x/;)—(A+B)}}

taking into account that:
Vv 1
A=B=-Y

fexp(—\/;)—exp(\/;)
75 (0.5)~p (1s) = Aexp(Vls )+ Bexp(~s ).

@B(O,S)—ép(l,S):ZS :L 1

\/; tanh(\/g)

Finally:

Finite difference resolution

The dimensionless film thickness is divided into / intervals: 1=/xAy and thus y=mxA4y with m=0,1,....,

dimensionless time is divided into n intervals: 7, =nx At andthus 7 = jx Az with j=0,1,.....,n . Equations (1S”) to (4S”)

then become:
1 29
og’ = (18”)
1 ] / 29
o =op " —Ayxyp (287)

A -1 -1 5
wl —yn ’-ijﬁwg w?’) (¢Z’ —phI” )} 0 (3S")

. 1.7 i 1.7 bR
vl —wg = ) (487)

/. The

At each j, 4/+4 variables: form=0to [, W?’j , 1//;'31’] , goZ';’j , go?’j and the previous values (at j-1) are related 4/+4 equations

thus leading to the following matrix equation:
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0,/
(DBJ
0,/
¢PJ
10 e 0 vy’
000 T e 0 0,/ T
Yp {O} 2 lines (lines # 1 and 2)
(L -10001000............ 0 (/)k’j 0
(L 0-1000104y ........... 0 B
P Ay S 0 41 lines (m=1 to 1)
R 001022 - 2X 10 0[x[{"" (k=1tol-1)|= ﬂ((pm,f-l_(pm,f-l) (lines # 3
T At k.j Ar\"B P
Ay Ay Ve to 4/ +2)
N 000-1-22 o1 . 0 k.j _AY (sl gl
At Ar Yp 1. \7B p
........ 0 2 lines
L,j JJ .
0 00wy’ 0 ¢éf 0| (lines # 4/+3 and 4/ + 4)
_ i
0neeeeeeeee e 010-, o/
L
4 BJ
l’j
Yp
Inversion of the square matrix provides the values of y we are looking for.
4. Cyclic voltammograms for a transmission line with a series resistance:
a a’ b b’
1.24 i/C/V 1.2 1.2 i/C/_v 1.24 i/C}V
0.8 0.81 0.8 0.8
0.44 0.41 0.44 0.44
0.0 0.0 0.0 0.0
-0.4] -0.41 04 -0.41
-0.81 -0.8 -0.8 -0.81
ol EENEE) L] EEMEE)N L) EEMEE) 5] (EEJEE)
0.0 0.2 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
c c’
My ey
0.8 0.8
0.41 0.41
0.0 0.0
-0.41 0.4
-0.81 -0.8
o] (EEJEE) ] (E-E)(E-E)

00 02 04 06 08 1.0

00 02 0.4 06 08 1.0
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Fig.S3. Variation of the dimensionless current function with the dimensionless potential (E—E;)/ (Ef —El-) using the transmission
line model with ,b’u =0.5(a,a’),1(b,b),2(c,c). (a,a’) tf, /tv =v/v0 = 0.05 (blue); 0.5 (dark yellow), 2 (red), 5 (green). (b, b’)

tf /tV =v /VO = 0.05 (blue); 0.5 (dark yellow), 2 (red). (c, ) tf /tv =V /vO = 0.05 (blue); 0.5 (dark yellow), 1 (red). Curves on

(a), (b), (c) correspond to the first scan and curves on (a’), (b’), (¢’) correspond the steady-state cycle.
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