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1. Capacitance of RC circuit in cyclic voltammetry:

We consider the RC circuit shown in figure 2 that includes a potentiostat able to maintain an applied linear 

potential ramp. During the first CV scan between  and , at a scan rate v, the current is:iE fE
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and the capacitance , calculated according to :C
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Hence:

 with  and 1 1 exp RC

max RC

vC v
C v v

  
         

  /RC f i u fv E E R C  max fC C

What is now the expression of the capacitance for successive CVs? We first derive the expression of the current at the scan 

limits (i.e.: at  and , or equivalently at  and  (with ), where  is the fE E iE E  2 1 ft n t   2 2 ft n t  0n  ft

time corresponding to a forward or reverse scan, i.e. :  for successive CVs. We use here a recurrence   /f f it E E v 

reasoning which consists in establishing expressions at cycle #n+1 from expression of cycle #n also showing that the 
considered expressions are valid at the initial cycle considered, here CV #2.

At CV #1
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we have shown that the current of the forward scan is:

 and thus the current at the end of the forward scan is: .1 expf
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On the reverse scan, the applied potential is , and we have: , , thus  2 fE v t t  u
f

qE R i
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  dqi
dt
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The solution of this differential equation is:  with A a constant and at , we have:expf
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of the first cycle is: 2
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We now assume that the current at the end of the forward scan and at the end of the CV #n (n>1) are:
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At CV # 2

During the forward scan, the potential is  and we have ;  hence:  2 fE v t t  u
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We obtain:  with B a constant.expf
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At t=2tf, we have:

 hence: 2
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Thus, t=3tf,:  which verifies equation (S1) with n = 23
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On the reverse scan, the potential is:  and we have:  and ,  4 fE v t t  u
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We obtain:  with H a constant.expf
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At t=3tf, we have: 

, hence:3
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 which verifies equation (S2) with n = 24
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At CV # n+1
We now show expressions (S1) and (S2) are valid at CV #n+1. 

During the forward scan, the potential is:  and we have  and  hence: 2 fE v t nt  u
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Resolution of this differential equation leads to:
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At t=(2n+1)tf, we have:

, thus . Therefore introducing equation (S2):
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This shows that the expression of  is valid for any integer value of n >1.2 1ni 

On the reverse scan, the potential is:  and we have  and , thus . 2 fE v nt t  u
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At t=(2n+2)tf, we have: 
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Thus, introducing equation (S1):
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This shows that the expression of  is valid for any integer value of n >1.2 2ni 

We can now calculate the capacitance for any cycle taking into account the expression of the forward current at the 
corresponding cycle #n+1, n>1:
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we finally obtain: , with 
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2. Capacitive charge storage in nanopores and diffuse layer
We consider the porous structure shown in figure S1.
The conductive material has an homogeneous Galvani potential . At a given position in the macropore (from the M

underlying electrode), the potential in the nanopores is assumed to be constant ( ) while the potential in the macropore np

is not constant due to the development of a diffuse layer.
The accumulated charge in the conductive material  is equal to the sum of the charge accumulated in the nanopores and M

in the diffuse layer in the macropore:

porous
electrode

double layer

nanopore
mesopore

D << h

4h

 D

Stern layer

diffuse layer

++++

++

++

Fig. S1. Schematic representation of the bi-hierarchical structure with macropores and nanopores.

Hence the differential capacitance:M nano dif   
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d d d



  
  

and, from the Gouy-Chapman model of the diffuse layer:  dif
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Then, considering : , showing that the differential capacitance is equivalent to two nano
nano

M

d
C

d



 d nano dlC C C 

capacitances in parallel, one describing the nanopores and the other the double layer in the macropores.

3. Transmission line model
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Fig.S2. Transmission line model.

Glossary of symbols
c: distributed capacitance per unit of surface area of the electrode and unit of thickness of the film, i.e., a capacitance per 
unit of volume of the film.

: thickness of the film.fd

i: current.
: radius of a pore.r

t: time.

: film time constant. 2 /f f P Pt d c 

x: distance from the (planar) base electrode. 
: film capacitance.f geom fC S cd

: initial and final potentials in cyclic voltammetry., i fE E

F: Faraday.
, , and : current densities (currents per working electrode unit surface area ) in solid parts of the film, pores BI PI I geomS

and solution, respectively.
R: radius of the electrode

: film resistance. P f
f

P geom

d
R

S






: solution resistance between the working electrode and the reference electrode.SR
: uncompensated solution resistance between the working electrode and the reference electrode.uR

: surface area of the base electrode.geomS

T: absolute temperature.
v: scan rate.

: fraction of the base electrode surface that are covered by the pores.P

: resistivity of the solution in the pores.P
: potential at the working electrode, the reference electrode, in the bulk solid parts of the film and in the , ,  and WE RE B P

pores, respectively.
Definition of the dimensionless variables and parameters 
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Governing equations

We are looking for the time-dependence of the potential between the working and reference electrode when a constant 
current is applied from t=0, recalling that the potential across the film  is equal to the potential difference    0, ,B P ft d t 

between working electrode and reference electrode,  according to (assuming an ideal potentiostat):WE RE 

 and . 0,B WEt     ,P f RE geom ux d t S R I t   

The definition of  deserves a particular attention. With no attempt to compensate ohmic drop effect by means of positive uR
feedback, . When positive feedback is activated, part or total of  may be compensated.u SR R SR
The potential differences and the current densities obey the following set of partial derivative equation accompanied by a 
series of initial and boundary conditions, at the two boundaries of the film, i.e., at the electrode ( ) and at the film 0x 
solution interface ( ).fx d

No ohmic drop in the bulk material:                                            (1S)   , 0,B B WEx t t   

Ohmic drop in the pores:                                                                             (2S)0P P
P

P
I

x
 




 


Capacitance charging at the pores' walls                               (3S)
 B PP BI I c

x x t
   

  
  

Conservation of fluxes throughout the system:                               (4S)( , ) ( , ) ( )P BI x t I x t I t 

The potential difference  is imposed by the instrument. In case of, e.g., an oxidation the linear potential scanning: WE RE 

,  being the starting potential and v the scan rate, leads to: WE RE iE E vt     iE
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and therefore:
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Dimensionless formulation
The advantage of a dimensionless formulation of the problem is that it minimizes the number of effective parameters from 
which the system depends, as these effective parameters are each a combination of several experimental parameters.

Space: , time:  where  is the time constant of the film.
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Currents densities:

,  ,  1P B
P B B P
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Thus, in dimensionless terms: 
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Resolution: 
Derivation of limiting behaviors of interest is greatly eased by the passage into the Laplace transform space as it is the case 
for all problems relative to electrical circuit and electronic devices. Any function f() is thus replaced by its Laplace 
transform:

, where s is the Laplace variable corresponding to the dimensionless time variable . The main  
0

( ) ( ) expf s f s d  



 
interest of Laplace transformation is that differentiation and integration are replaced by multiplication and division by the 
Laplace variable, s, respectively. The set of the (1S') – (5S') equations thus become (1S"') – (5S"') in the Laplace space. 
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Differentiation of equations (1S"') and (2S"') leads to:
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, and from (2S"'): 
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leading by subtraction to:
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Integration of equation (5S"') leads to:

                                                      (6S"')   exp expB P A y s B y s    

and thus, in particular, to: 
, i.e.,                         (7S"')   0,B P s A B       0, 0,B Ps s A B   

, i.e.    (8S"')       1, exp expB P s A s B s            1, 1, exp expB Ps s A s B s    

We are looking for the dimensionless current-time response:
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after introduction of the Laplace dimensionless impedance of the film
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   0,s 0, s
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This is not a Laplace transform, of any function of , unlike the s and the s. It is simply a function of s. The expression  
of z(s) as a function of the various parameters is derived at the end of this section.:
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showing that the ensuing dimensionless current response, is: 
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The following limiting situations of interest are reached when: 
a) , corresponding to asymptotic behavior at large values of . Then:0s 

 therefore:  i.e., in the original space:  
01 1

tanh
s

ss
 0 1s

s
  1 

i.e., a plateau of unity height is asymptotically reached at long times. 
b) ,  in the original space, embodies the limiting behavior prevailing at the initial stages of the current-time s   0 

responses

Then:  1( ) sz s
s



The Laplace dimensionless current then becomes: 
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The intrinsic properties of the film may be obtained from a situation where the resistance of the solution outside the film 
would be totally compensated by means of a hypothetically perfect positive feedback resistance compensation. Then, in the 
Laplace plane, this characteristic dimensionless current-time response is:

 i.e., in the original place 
0

1
u

s

s s
 


 0

2
u

s


 







Determination of A and B , i.e. of a 
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( ) B Pz s
 






Determination of A and B as a function of  from equations (1S"') and (2S"'):( )s
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We already know from equation (5S"') that:

   exp expB P A y s B y s    

It follows that:
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This equation is applied at each film boundaries:
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The next step consists in the derivation of  as a function of A and B so to obtain  according to    0,s 0, sB P  ( )z s
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We are looking now for an expression of the potential difference  in the dimensionless Laplace space that    0, 1,B Ps s 

is going to serve in the expression of the dimensionless Laplace impedance of equation (8S"'). We have::
             0, 1, 0, 0, 0, 1,B P B P P Ps s s s s s         

Recalling that:
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It follows that:
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Finite difference resolution
The dimensionless film thickness is divided into l intervals:  and thus  with . The 1 l y  y m y  0,1,....,m l

dimensionless time is divided into n intervals:  and thus  with . Equations (1S’) to (4S’) f n   j   0,1,....,j n

then become:

                                                                                    (1S”), 1,m j m j
B B  

                                                                (2S”), 1, ,m j m j m j
P P Py     

       (3S”)   , 1, , , , 1 , 1 0m j m j m j m j m j m j
B B B P B P

y     


          

                                               (4S”) , 1, , 1,m j m j m j m j
B B P P       

At each j, 4l+4 variables: for m = 0 to l, , , ,  and the previous values (at j-1) are related 4l+4 equations ,m j
B ,m j

P ,m j
B ,m j

P

thus leading to the following matrix equation:
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Inversion of the square matrix provides the values of  we are looking for.

4. Cyclic voltammograms for a transmission line with a series resistance:
                                         a                                                a’                                                      b                                               b’
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Fig.S3. Variation of the dimensionless current function with the dimensionless potential  using the transmission    /i f iE E E E 

line model with 0.5 (a, a’), 1 (b, b’), 2 (c, c’). (a, a’)  0.05 (blue); 0.5 (dark yellow), 2 (red), 5 (green). (b, b’) u  0f vt / t v / v 

 0.05 (blue); 0.5 (dark yellow), 2 (red). (c, c’)  0.05 (blue); 0.5 (dark yellow), 1 (red). Curves on 0f vt / t v / v  0f vt / t v / v 

(a), (b), (c) correspond to the first scan and curves on (a’), (b’), (c’) correspond the steady-state cycle.
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