Supporting Information

Space constrained stereoselective geometric isomerization of 1,2-diphenylcyclopropane and stilbenes in an aqueous medium

A. Mohan Raj, Gaurav Sharma, Rajeev Prabhakar and V. Ramamurthy* Department of Chemistry, University of Miami, Coral Cables, Miami, USA

murthy1@miami.edu

	Contents	Page
Table-S1	Relative stabilization energies of guest molecules in various media	S3
Figure S1.	${ }^{1} \mathrm{H}$ NMR titration of trans-1 with OA	S4
Figure S2.	${ }^{1} \mathrm{H}$ NMR titration of cis-1 with OA	S5
Figure S3.	${ }^{1} \mathrm{H}$ NMR titration of trans-2 with OA	S6
Figure S4.	${ }^{1} \mathrm{H}$ NMR titration of cis-2 with OA	S7
Figure S5.	${ }^{1} \mathrm{H}$ NMR titration of trans-3 with OA	S8
Figure S6.	${ }^{1} \mathrm{H}$ NMR titration of cis-3 with OA	S9
Figure S7.	${ }^{1} \mathrm{H}$ NMR of trans-1 $\mathbf{1}$ and cis-1 complexes with integration value	S10
Figure S8.	${ }^{1} \mathrm{H}$ NMR of trans-2 and cis-2 complexes with integration value	S11
Figure S9.	${ }^{1} \mathrm{H}$ NMR of trans-3 and cis-3 complexes with integration value	S12
Table-S2	Diffusion constant values of complexes $\mathbf{1 , 2}$ and $\mathbf{3}$ with OA	S13
Figure S10.	2D-DOSY spectrum of OA host molecule	S13
Figure S11.	2D-DOSY spectrum of trans-1@OA ${ }_{2}$ complex	S14
Figure S12.	2D-DOSY spectrum of cis-1@OA ${ }_{2}$ complex	S14
Figure S13.	2D-DOSY spectrum of trans-2@ OA_{2} complex	S15
Figure S14.	2D-DOSY spectrum of cis-2@OA ${ }_{2}$ complex	S15
Figure S15.	2D-DOSY spectrum of trans-3@OA 2 complex	S16
Figure S16.	2D-DOSY spectrum of cis-3@OA ${ }_{2}$ complex	S16
Table-S3	Photostationary state of 1,2 and $\mathbf{3}$ with and without OA	S17

Figure S17.	Competition experiments between cis and trans isomers of $\mathbf{1}$ towards OA capsule	S 18
Figure S18 and S19	Competition experiments between cis and trans isomers of 2 towards OA capsule	$\mathrm{S} 19, \mathrm{~S} 20$
Figure S20 and S21	Competition experiments between cis and trans isomers of $\mathbf{3}$ towards OA capsule	$\mathrm{S} 21,22$
Figure S22.	Absorption spectra of OA and complexes of $\mathbf{1 , 2}$ and $\mathbf{3}$ with OA	S 23
	Experimental Section	S 24

Table S1. Relative energies of the cis and trans isomers of guest molecules 1-3 obtained from MD production trajectories.

stilbene	cis	trans
Vacuum	20.01	0
Water	23.36	0
Benzene	21.20	0
1,2-diphenyl cyclopropane (1)	cis	trans
Vacuum	10.57	0
Water	10.86	0
Benzene	11.13	0
4.4'-dimethylstilbene (2)	$\boldsymbol{c i s}$	trans
Vacuum	20.62	0
Water	23.92	0
Benzene	21.78	0
4-propylstilbene (3)	$\boldsymbol{c i s}$	trans
Vacuum	20.21	0
Water	23.54	0
Benzene	21.39	0

Figure S1. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer $/ \mathrm{D}_{2} \mathrm{O}$; (ii) trans-1@ $\mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[\mathbf{1}]=0.25 \mathrm{mM})$; (iii) trans $\mathbf{- 1} @ \mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[\mathbf{1}]=0.5$ $\mathrm{mM})$; "*" represent the bound protons of the trans $\mathbf{- 1}$ and"•"represent the residual $\mathrm{D}_{2} \mathrm{O}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) cis-1@OA ([OA] = 1 mM), $[\mathbf{1}]=0.25 \mathrm{mM})$; (iii) cis $\mathbf{- 1} @ \mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[\mathbf{1}]=0.5 \mathrm{mM}$); "*" represent the bound protons of the $c i s-1$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) trans-2@ $\mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[\mathbf{2}]=0.25 \mathrm{mM})$; (iii) trans-2 $@ \mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[\mathbf{2}]=0.5$ mM); "॰"represent the residual $\mathrm{D}_{2} \mathrm{O}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) cis-2@OA ([OA] = 1 mM), [2] = 0.25 mM); (iii) cis-2@OA ([OA] = 1 mM), [2] = 0.5 mM); " \bullet "represent the residual $\mathrm{D}_{2} \mathrm{O}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na} \mathrm{N}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) trans-3 $@ \mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[3]=0.25 \mathrm{mM})$; (iii) trans-3 $@ \mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[3]=0.5$ mM); "॰"represent the residual $\mathrm{D}_{2} \mathrm{O}$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}\left(1 \mathrm{mM}\right.$) in $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) cis-3@ $\mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[3]=0.25 \mathrm{mM}$); (iii) cis-3@ $\mathrm{OA}([\mathrm{OA}]=1 \mathrm{mM}),[3]=0.5 \mathrm{mM}$); " \bullet "represent the residual $\mathrm{D}_{2} \mathrm{O}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer $/ \mathrm{D}_{2} \mathrm{O}$; (ii) trans-1@ OA_{2}; (iii) cis-1 @ OA_{2} complex.

Note: The ratio of the integration of the H_{f} of the host OA with respect to cyclopropyl hydrogens is $2: 1$. The capsule being made up of two OA there are $2 \times 4 \mathrm{H}_{\mathrm{f}}$ hydrogens and one guest molecules has 4 cyclopropyl hydrogens. The integration ratio is consistent with $2: 1$ hostguest complex.

Figure S8. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) trans-2@ OA_{2}; (iii) cis-2 @ OA_{2} complex

Note: The ratio of the integration of the H_{f} of the host OA with respect to methyl hydrogens of the guest is $8: 6$. The capsule being made up of two OA there are $2 \times 4 \mathrm{H}_{\mathrm{f}}$ hydrogens and one guest molecules has 6 methyl hydrogens. The integration ratio is consistent with 2:1 host-guest complex.

Figure S9. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $\mathrm{OA}(1 \mathrm{mM})$ in $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{~B}_{4} \mathrm{O}_{7}$ buffer/ $\mathrm{D}_{2} \mathrm{O}$; (ii) trans-3@ OA_{2}; (iii) cis-3@ OA_{2} complex.

Note: The ratio of the integration of the H_{f} of the host OA with respect to methyl hydrogens of the guest is 8:6. The capsule being made up of two OA there are $2 \times 4 \mathrm{H}_{\mathrm{f}}$ hydrogens and one guest molecules has 6 methyl hydrogens. The integration ratio is consistent with 2:1 host-guest complex. The integration ratios of H_{f} of the host OA and methylene hydrogens of the guest (8:2 and 8:2) are in agreement with the host-guest ratio of 2:1.

Compound	Diffusion constant $\mathbf{(\mathbf { c m } ^ { 2 } / \mathbf { s })}$
OA	1.88×10^{-6}
trans-1 $@ \mathrm{OA}_{2}$	1.36×10^{-6}
cis-1 $@ \mathrm{OA}_{2}$	1.45×10^{-6}
trans-2@ OA_{2}	1.27×10^{-6}
cis-2@ OA_{2}	1.39×10^{-6}
trans-3@ OA_{2}	1.37×10^{-6}
cis-3@ OA_{2}	1.30×10^{-6}

Table S2. Diffusion constant of complexes $\mathbf{1 , 2}$ and $\mathbf{3}$ with OA by 2D-DOSY NMR.

Figure S10. 2D-DOSY spectrum of OA (2 mM) in borate buffer.

Figure S11. 2D-DOSY spectrum of trans-1@ OA_{2} complex.

Figure S12. 2D-DOSY spectrum of cis-1@ OA_{2} complex.

Figure S13. 2D-DOSY spectrum of trans-2@ OA_{2} complex.

Figure S14. 2D-DOSY spectrum of cis-2@ OA_{2} complex.

Figure S15. 2D-DOSY spectrum of trans-3@ OA_{2} complex.

Figure S16. 2D-DOSY spectrum of $c i s-3 @ \mathrm{OA}_{2}$ complex.

Compound	Solution (acetonitrile) ${ }^{\mathbf{a}, \mathbf{b}}$	$\mathbf{O A}^{a, b}$
trans $:$ cis	trans $:$ cis	
1,2-diphenylcyclopropane (1)	$55: 45$	$90: 10$
4,4'-dimethylstilbene (2)	$20: 80$	$80: 20$
4-propylstilbene (3)	$15: 85$	$3: 97$

Table S3. Photostationary state mixture of guest molecules in solution and within OA capsule (values quantified by NMR integration)
${ }^{a}$ ratios obtained from photoirradiation of both isomers
${ }^{b}$ values mentioned is the average of 3 trials
a)

b)

Figure S17. a) Competition experiments between cis and trans isomers of $\mathbf{1}$ towards OA capsule. Partial ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) $1: 2$ complex of cis- $1 @ \mathrm{OA}_{2}$; (ii) upon addition of 0.5 equiv. of trans-1 to (i); b) (i) $1: 2$ complex of trans- $\mathbf{1} @ \mathrm{OA}_{2}$; (ii) upon addition of 0.5 equiv. of $c i s-1$ to (i).

Figure S18. Competition experiments between cis and trans isomers of 2 towards OA capsule. Partial ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) 1: 2 complex of trans-2@ OA_{2}; (ii) upon addition of 0.25 equiv. of cis-2 to (i); (iii) upon addition of 0.5 equiv. of cis-2 to (i).

Figure S19. Competition experiments between cis and trans isomers of $\mathbf{2}$ towards OA capsule. Partial ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) 1: 2 complex of cis-2@OA ; (ii) upon addition of 0.25 equiv. of trans-2 to (i); (iii) upon addition of 0.5 equiv. of trans- 2 to (i).

Figure S20. Competition experiments between cis and trans isomers of $\mathbf{3}$ towards OA capsule. Partial ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) 1:2 complex of trans-3 @ OA_{2}; (ii) upon addition of 0.25 equiv. of cis-3 to (i); (iii) upon addition of 0.5 equiv. of cis- $\mathbf{3}$ to (i).

Figure S21. Competition experiments between cis and trans isomers of $\mathbf{3}$ towards OA capsule.
Partial ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of (i) 1:2 complex of cis-3 @ OA_{2}; (ii) upon addition of 0.25 equiv. of trans-3 to (i); (iii) upon addition of 0.5 equiv. of trans- $\mathbf{3}$ to (i).

Figure S22. a) Absorption spectra of OA in buffer compared with cis and trans complexes of $\mathbf{1} @ \mathrm{OA}_{2} ;$ b) Absorption spectra of OA in buffer compared with trans complexes of $\mathbf{2}$ and $\mathbf{3}$ with OA.

Experimental section

Materials and Methods

The host Octa acid was synthesized following published procedure. ${ }^{1}$ Cis and trans isomers of 4,4'dimethylstilbene (2), 4-propylstilbene (3) and 1,2-diphenylcyclopropane (1) were synthesized and characterized by reported procedure. ${ }^{2,3}$

General Procedure for guest binding studies probed by NMR

A $\mathrm{D}_{2} \mathrm{O}$ stock solution $(600 \mu \mathrm{~L})$ of host $\mathrm{OA}(1 \mathrm{mM})$ and sodium borate buffer $(10 \mathrm{mM})$ taken in a NMR tube was titrated with the guest by sequential addition of 0.25 eq of guest $(2.5 \mu \mathrm{~L}$ of a 60 mM solution in DMSOd_{6}). The complexation was achieved by shaking the NMR tube for about five minutes. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at room temperature under aerated conditions on a Bruker 500 MHz NMR. 1:2 complex was achieved by $5 \mu \mathrm{~L}$ of guest solution to $600 \mu \mathrm{~L}$ of 1 mM OA host in 10 mM buffer. Competition studies were done by taking cis isomer complex in NMR tube and added slowly the trans isomer and recorded NMR spectra and vice versa.

Photoirradiation of the complex

1 mM concentration of the host-guest complexes (2:1) prepared as above mentioned procedure. The NMR tube was kept in UV-reactor and irradiated using 450 W medium pressum Hg lamp kept in a Pyrex jacket with cold water circulation. Cut off filter (0-54) used to irradiate the stilbene complexes.

Molecular Simulations procedure

OA-guest simulations were performed using the following multistep strategy. In the first step, a three-dimensional structure of OA was taken from our previous work ${ }^{4}$ and optimized using the Gaussian09 program. ${ }^{5}$ The guest molecules were modeled using the GaussView program package and were optimized without any geometrical constraint at B3LYP ${ }^{6} / 6-31 \mathrm{~g}(\mathrm{~d})^{7}$ level using Gaussian09 program. The calculation of RESP charges and the making of the topology files for OA and guest molecules was performed by using Antechamber. ${ }^{8}$ Autodock Vina1.5.6 software was used to perform molecular docking to investigate the binding of the guest molecule to the OA. ${ }^{9}$ The size of the grid was chosen to cover the OA, and the spacing was kept to $1.00 \AA$ which is a standard value for Autodock Vina. The molecular dynamics (MD) simulations of OA with
guest molecule were performed using the GROMACS4.5.6 ${ }^{10}$ program utilizing the AMBER03 ${ }^{11}$ force field. The starting structures were placed in a cubic box with dimensions of $60 \times 60 \times 60 \AA$. The shortest distance from the surface of the OA to the edge of the box was 1.0 nm . Electrostatic interactions were calculated using the Particle Mesh Ewald method ${ }^{12}$, and a cutoff at 1.2 nm was used for both van der Waals and Coulombic interactions. The box was filled with TIP3P water molecules. ${ }^{13}$ To neutralize the system some of the water molecules were replaced with Na and Cl ions. Energy minimization of the OA-guest complex was performed for 3000 steps by the steepest descent method, which resulted in the formation of the starting structure for MD simulations. All the MD simulations were performed for 100 ns . The simulations were carried out with a constant number of particles (N), pressure (P), and temperature (T) (NPT ensemble). To constrain the bond length and angle of the water molecules SETTLE ${ }^{13}$ algorithm was used and LINCS ${ }^{14}$ algorithm was employed to constrain the bond lengths of the OA. Particle-Mesh Ewald (PME) method was used to calculate the long-range electrostatic interactions. The MD trajectories were computed for each model with a time step of 2 fs. Cluster analysis was performed to derive the most representative structures of the OA. Yasara ${ }^{15}, \mathrm{VMD}^{16}$, and Chimera ${ }^{17}$ programs were used for visualization and for the preparation of the structural diagrams presented in this study.

References

1. Gibb, C. L. D.; Gibb, B. C., J. Am. Chem. Soc. 2004, 126, 11408-11409.
2. Parthasarathy, A.; Ramamurthy, V., Photochem. Photobiol. Sci. 2011, 10, 1455- 1462.
3. Applequist, D. E.; Gdanski, R. D., J. Org. Chem. 1981, 46, 2502-2510.
4. Choudhury, R.; Barman, A.; Prabhakar, R.; Ramamurthy, V., J. Phys. Chem. B 2012, 117, 398-407.
5. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennuci, B.; Petersson, G. Gaussian, Inc.,: Wallingford CT, 2009.
6. Becke, A. D., J. Chem. Phys. 1993, 98, 5648-5652.
7. Francl, M. M.; Pietro, W. J.; Hehre, W. J., J. Chem. Phys. 1982, 77, 3654-3665.
8. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., J. Comput. Chem. 2004, 25, 1157-1174.
9. Trott, O.; Olson, A. J., J. Comput. Chem. 2010, 31, 455-461.
10. Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E., J. Chem. Theory Comput. 2008, 4, 435-447.
11. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., J. Comput. Chem. 2005, 26, 1668-1688.
12. Darden, Tom, Darrin York, and Lee Pedersen. J. Chem. Phys. 1993, 98, 10089-10092.
13. Price, D. J.; Brooks III, C. L., J. Chem. Phys. 2004, 121, 10096-10103.
14. Miyamoto, S.; Kollman, P. A., J. Comput. Chem. 1992, 18, 952-962.
15. Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G., J. Comput. Chem. 1997, 18, 14631472.
16. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38.
17. Krieger, E.; Vriend, G., Bioinformatics 2014, 30, 2981-2984.
