Journal: ACS Sustainable Chemistry & Engineering

Manuscript ID: sc-2019-016963.R1

Supporting Information

Number of pages: 12 (page S1- page S12)

Number of figures: 8 (Figure S1-Figure S8)

Number of table: 1 (Table S1)

NiS-MoS₂ hetero-nanosheet arrays on carbon cloth for high-performance flexible hybrid energy storage devices

Shundong Guan,^{†,‡} Xiuli Fu, ^{*,†} Zhezhu Lao,[§] Chuanhong Jin,[§] and Zhijian Peng^{*,‡}

[†] State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing

University of Posts and Telecommunications, Beijing 100876, P. R. China

[‡] School of Science, China University of Geosciences, Beijing 100083, P. R. China

[§] State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University,

Hangzhou, Zhejiang 310027, P.R. China

*Corresponding author: Prof. Xiuli Fu, Prof. Zhijian Peng

*Email: xiulifu@bupt.edu.cn (X. Fu); pengzhijian@cugb.edu.cn (Z. Peng)

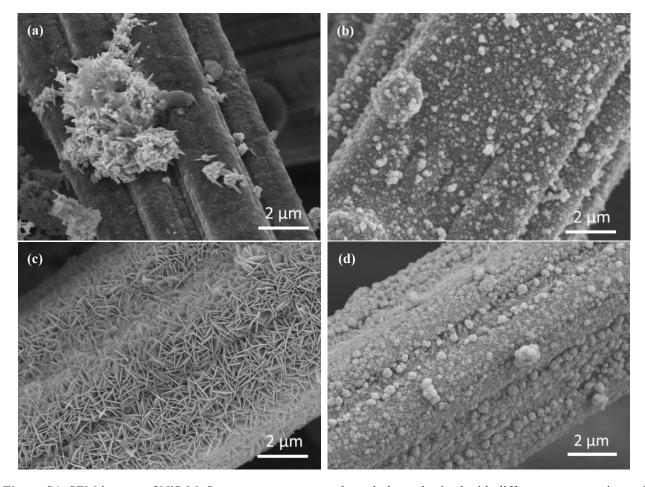


Figure S1. SEM images of NiS-MoS₂ nanostructures on carbon cloth synthesized with different concentrations of sodium dodecyl sulfate (SDS): (a) 0, (b) 0.1, (c) 0.2, and (d) 0.3 mol·L⁻¹.

As shown in **Figure S1**, the concentration of SDS has significant influence on the morphology of the products. Without SDS in the solution, some irregular-shaped nanostructures were formed randomly on the surface of CC (**Figure S1a**), indicating that NiS and MoS₂ couldn't uniformly grow on the surface of CC due to the poor wettability of carbon in aqueous solution. Similarly, when a relatively low concentration (0.1 mol·L⁻¹) of SDS was used, only some small particle or flower-like nanostructures were formed, decorating on the CC (**Figure S1b**). However, when 0.2 mol·L⁻¹ SDS was applied, many large nanosheets were uniformly and vertically aligned as nanowalls on the CC (**Figure S1c**). By further increasing the concentration of SDS to 0.3 mol·L⁻¹, the formed nanosheets were aggregated together with a smaller size (**Figure S1d**). Thus, 0.2 mol·L⁻¹ of SDS was optimized for the synthesis of NiS-MoS₂ HNSAs.

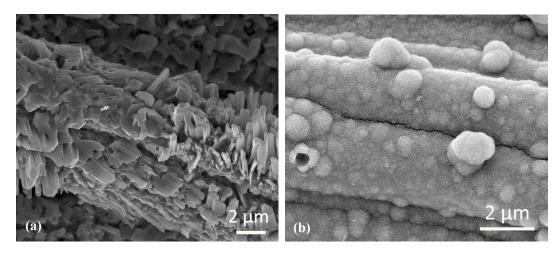
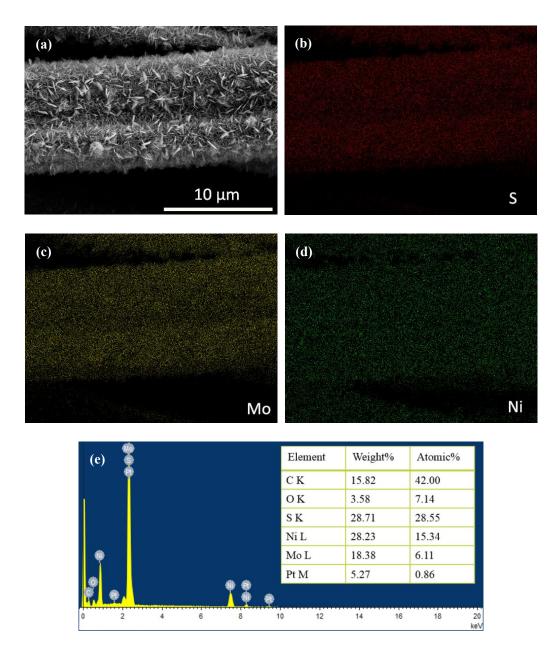



Figure S2. SEM images of pure NiS (a) and MoS_2 (b) nanostructures on CC.

As comparative samples for the NiS-MoS₂ HNSAs/CC, pure NiS and MoS₂ nanostructures were also grown on CC *via* a similar process, respectively. For the NiS/CC, many irregular big nanoparticles are aggregating together and wrapping the CC. For the MoS₂/CC sample, a layer of tiny nanosheets is uniformly coating the CC.

Figure S3. SEM-EDX results of NiS-MoS₂ HNSAs/CC. (a) Typical SEM image and the corresponding EDX mapping spectra of S (b), Mo (c) and Ni (d) elements. (e) EDX spectrum, in which the inset shows the table of element contents.

From **Figure S3**, it can be seen that S, Mo and Ni elements are all existing over the whole surface of carbon fiber, indicating that NiS and MoS_2 are uniformly distributing on the carbon cloth (CC). The calculated percentage of MoS_2 in the sample was about 28.5 mol.%. It should be noted that, Pt atoms originate from the sprayed Pt film for the preparation of SEM sample; and O atoms might be derived from the adsorbed O_2 or H_2O on the sample.

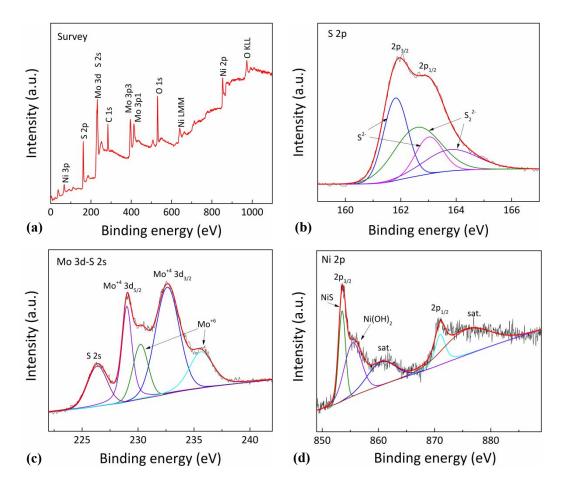
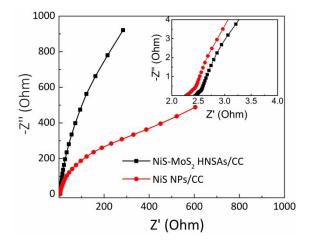



Figure S4. XPS results of NiS-MoS₂ HNSAs/CC. (a) XPS survey spectrum, and high-resolution spectra of S 2p (b), Mo 3d-S 2s (c), and Ni 2p (d).

Figure S4 shows the XPS results of the obtained NiS-MoS₂ HNSAs/CC. The XPS survey spectrum (**Figure S4a**) reveals the existence of S, Mo, Ni, O and C atoms in this sample. In the S 2p high-resolution spectrum (**Figure S4b**), the two main peaks at 161.8 and 162.6 eV can be assigned to those of $2p_{3/2}$ and $2p_{1/2}$ in S^{2-,S1} Meanwhile, the coincident binding energies of 162.5 and 163.9 eV could be attributed to those of S_2^{2-} , implying the existence of unsaturated S atoms on Ni-S and/or Mo-S sites, which are correlated with the well-remained electrochemically active sites.^{S2} The peak located at 226.3 eV in the Mo 3d-S 2s high-resolution spectrum (**Figure S4c**) can be indexed to S 2s;^{S3} the two main peaks at 229.0 and 232.6 eV can be assigned to the 3d_{5/2} and 3d_{3/2} orbitals of Mo (IV), respectively; and the peaks at 230.2 and 235.6 eV are in accordance with those of Mo (V1) due to its partial oxidation during exposure to air.^{S4} In addition, the narrow peaks at 853.5 and 871 eV in the Ni 2p

high-resolution spectrum (**Figure S4d**) can be assigned to the $2p_{3/2}$ and $2p_{1/2}$ of Ni²⁺ in NiS, respectively, and the two weak humps centered at 860.9 and 876.6 eV are owing to their corresponding satellite peaks.^{S4} The peak at 855.5 eV can be assigned to the Ni²⁺ in Ni(OH)₂, originating from the hydrolysis of Ni(OAc)₂ under hydrothermal conditions.^{S1} But Ni(OH)₂ was not detected by XRD characterization on the samples, which might be due to the fact that Ni(OH)₂ was of poor crystallinity and/or absorbed on the surface of the sample with an amorphous structure, or owing to its low content.

Figure S5 EIS Nyquist plots of the NiS-MoS₂ HNSAs/CC and NiS NPs/CC electrodes, where the inset shows the enlarged view in the range of high frequency.

EIS measurements were further applied to examine the electrochemically kinetic processes. As is seen in **Figure S5**, the NiS-MoS₂ HNSAs/CC electrode shows a larger slope in the low frequency region than NiS NPs/CC, implying a better capacitive behaviour with lower diffusion resistance. And from the enlarged view in the range of high frequency (see the inset in **Figure S5**), both electrodes present a low series resistance (R_s) of about 2.5 Ω , indicating a small internal resistance of the NiS-MoS₂ HNSAs/CC electrode.

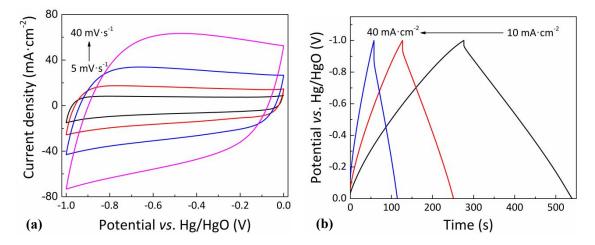
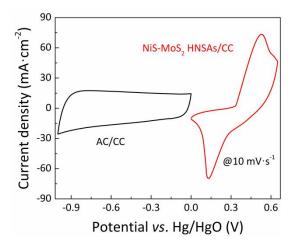



Figure S6. Electrochemical performance of AC/CC electrode. (a) CV curves at different scan rates and (b) GCD curves at different current densities.

The profiles of CV and GCD curves are two macroscopic signs for identifying the energy storage type of an electrode material. As shown in **Figure S6**, the CV and GCD curves exhibits nearly rectangular and triangular shapes, respectively, both of which confirm the ideal double-layer capacitive behavior of the activated carbon/ carbon cloth (AC/CC) negative electrode for a supercapacitor (SC).

Figure S7. Comparison on CV curves of the AC/CC and NiS-MoS₂ HNSAs/CC electrodes at different potential windows collected at a scan rate of 10 mV·s⁻¹.

The comparison on the CV curves of the AC/CC and NiS-MoS₂ HNSAs/CC electrodes at a scan rate of 10 $\text{mV}\cdot\text{s}^{-1}$ (**Figure S7**) reveals that, the working potential range of the AC/CC electrode was -1.0-0 V, while that of NiS-MoS₂ HNSAs/CC electrode was 0-0.65 V. This result indicates that there is a suitable working potential window between the AC/CC and NiS-MoS₂ HNSAs/CC electrodes. Besides, the capacity of the AC/CC electrode is comparable with that of the NiS-MoS₂ HNSAs/CC electrode. Both results confirm that the present AC/CC and NiS-MoS₂ HNSAs/CC electrodes can be used as a couple of well-matched electrodes for hybrid capacitors.

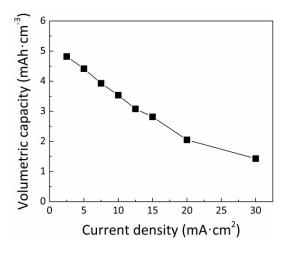


Figure S8. The volumetric capacity versus discharge current density of NiS-MoS₂//AC solid-state hybrid capacitors.

As shown in **Figure S8**, the volumetric capacity of the NiS-MoS₂//AC solid-state hybrid capacitors was calculated from the GCD curves based on the total volume (0.08 cm^3) of the device. The volumetric capacity are 4.82, 4.41, 3.93, 3.54, 3.08, 2.81, 2.05 and 1.43 mAh·cm⁻³ at a current density of 2.5, 5, 10, 12.5, 15, 20 and 30 mA·cm⁻², respectively.

Table S1. Comparison on the capacity value of NiS-MoS2 HNSAs/CC electrode with other reported positive

Ref.

This work

2

44

45

46

47

S5

S6

S7

S8

S9

S10

S11

S12

Framework materials*	Electrode materials*	Area capacity (μAh/cm²)	Mass capacity (mAh/g)	Current density	Rate capability	Electrolyte*
C cloth	NiS-MoS ₂ HNSAs	760	271.7	2.5 mA/cm ²	39% (40 mA/cm ²)	6 М КОН
C cloth	Ni-Mo-S nanosheets	560	312	1 mA/cm ²	78.85% (50 mA/cm ²)	КОН
C cloth	Ni _{0.54} Co _{0.46} O ₂ nanosheet arrays	438	238.1	1 mA/cm ²	90.3% (50 mA/cm ²)	2 М КОН
C cloth	H-TiO ₂ @Ni(OH) ₂ nanowire arrays	612	306	1 mV/s	65% (100 mV/s)	6 M KOH
C nanotube fiber	CoNiO ₂ @Ni(OH) ₂ nanowire arrays	674.1	539.3	1 mA/cm ²	69.8% (10 mA/cm ²)	3 М КОН
C nanofibers	Ni(OH)2 nanoplate	-	208.4	5 mV/s	92% (40 mV/s)	6 M KOH
C cloth	NiCoP@NiCoP nanowire arrays	-	312	1 A/g	78% (10 A/g)	3 М КОН
Graphite fibers	Ni-Co-N/NiCo ₂ O ₄ nanosheets	-	384.75	4 A/g	86.5% (20 A/g)	3 М КОН
Ni foam	Co-Cd-Se nanorods	384	192	1 A/g	76% (15 A/g)	2 М КОН
Ni foam	Zn-Co-S nanowires	900	366.7	3 mA/cm ²	62% (40 mA/cm ²)	6 M KOH
Ni foam	NiSe@MoSe ₂ nanosheet arrays	-	128.2	1 A/g	76% (15 A/g)	2 М КОН
Ni foam	Ni ₃ Se ₂ @Ni(OH) ₂ nanocomposite	1689	281.5	3 mA/cm ²	66.8% (40 mA/cm ²)	3 М КОН
Cu fibers	NiO NSs@CNTs @CuO nanowire arrays	-	230.48	2 A/g	76.83% (25 A/g)	1 М КОН
Co foam	VS ₄ /rGO/CoS ₂ @Co nanocomposite	-	274.3	0.625 A/g	35% (6.25 A/g)	1 М КОН

electrodes in alkaline aqueous solution

* C: Carbon

M: mol·L⁻¹

REFERENCES

(S1) Guan, S. D.; Fu, X. L.; Zhang, Y.; Peng, Z. J. beta-NiS modified CdS nanowires for photocatalytic H₂ evolution with exceptionally high efficiency. *Chem. Sci.* **2018**, *9* (6), 1574-1585, DOI: 10.1039/c7sc03928j.

(S2) Liu, N.; Guo, Y. L.; Yang, X. Y.; Lin, H. L.; Yang, L. C.; Shi, Z. P.; Zhong, Z. W.; Wang, S. N.; Tang, Y.; Gao, Q. S. Microwave-assisted reactant-protecting strategy toward efficient MoS₂ electrocatalysts in hydrogen evolution reaction. *ACS Appl. Mater. Interfaces* **2015**, *7* (42), 23741-23749, DOI: 10.1021/acsami.5b08103.

(S3) Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W.; Paik, U. Formation of Ni-Co-MoS₂ nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. *Adv. Mater.* **2016**, *28* (40), 9006-9011, DOI: 10.1002/adma.201601188.

(S4) Nesbitt, H. W.; Legrand, D.; Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. *Phys. Chem. Miner.* **2000**, *27* (5), 357-366, DOI: DOI 10.1007/s002690050265.

(S5) Zhu, Y. L.; Zong, Q.; Zhang, Q. L.; Yang, H.; Wang, Q. Q.; Wang, H. Y. Three-dimensional core-shell NiCoP@NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. *Electrochim. Acta* **2019**, *299*, 441-450, DOI: 10.1016/j.electacta.2019.01.043.

(S6) Tan, H.; Liu, Z. H.; Chao, D. L.; Hao, P.; Jia, D. D.; Sang, Y. H.; Liu, H.; Fan, H. J. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. *Adv. Energy Mater.* **2018**, *8* (21), 1800685, DOI: 10.1002/aenm.201800685.

(S7) Zhai, Z. B.; Huang, K. J.; Wu, X. Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. *Nano Energy* **2018**, *47*, 89-95, DOI: 10.1016/j.nanoen.2018.02.059.

(S8) Li, C.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. *Adv. Energy Mater.* **2018**, *8* (8), 1702014, DOI: 10.1002/aenm.201702014.

(S9) Peng, H.; Zhou, J. Z.; Sun, K. J.; Ma, G. F.; Zhang, Z. G.; Feng, E.; Lei, Z. Q. High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe₂ nanosheet array and nitrogen-doped carbon nanosheet. *ACS Sustainable Chem. Eng.* **2017**, *5* (7), 5951-5963, DOI: 10.1021/acssuschemeng.7b00729.

(S10) Shi, X.; Key, J.; Ji, S.; Linkov, V.; Liu, F.; Wang, H.; Gai, H.; Wang, R. Ni(OH)₂ nanoflakes supported on
3D Ni₃Se₂ nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. *Small* **2018**, e1802861, DOI: 10.1002/smll.201802861.

(S11) Nagaraju, G.; Sekhar, S. C.; Yu, J. S. Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. *Adv. Energy Mater.* **2018**, *8* (7), 1702201, DOI: 10.1002/aenm.201702201.

(S12) Wang, S. Q.; Song, Y. P.; Ma, Y.; Zhu, Z. Q.; Zhao, C. H.; Zhao, C. J. Attaining a high energy density of 106 Wh kg⁻¹ for aqueous supercapacitor based on VS4/rGO/Cos₂@Co electrode. *Chem. Eng. J.* **2019**, *365*, 88-98, DOI: 10.1016/j.cej.2019.02.031.