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Potential function interactions  

Figure S1 depicts the potential function interactions that define the molecular dynamics simulations 

described in this work. The potentials are identified using arrows and numbers that correspond to the 

equations that describe the potentials, which are similar to validated potentials and parameters used in 

previous research. 

 

Figure S1. Schematic of energy potential function interactions where numbers refer to the corresponding equations. 

 

A Lennard Jones potential ULJ exists between all polymer beads, given by 
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where r is the distance between two beads, σ = 0.7 nm is the bead diameter, rc = 2.5σ is the cutoff distance 

within which interactions between neighboring beads are considered, and ε = TkB is the potential well depth, 

where T = 300 K is the absolute temperature and kB is the Boltzmann constant. A finitely extensible 
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nonlinear elastic (FENE) potential UFENE acts as a spring to bond neighboring beads of the same molecule, 

i.e., 
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where l is the bond length, l0 = 1.3σ is the equilibrium bond length, R0 = 0.3σ indicates the maximum 

extensible range, and k = 40ε/σ2 is the spring constant. The substrate interacts with the polymer via a 

dispersive van der Waals interaction UVDW, described as 
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We also use a short-range exponential potential UEXP to model the attraction of functional end beads to each 

other, which represents the attraction of functional hydroxyl groups and is given by 
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where rc = 1.0σ is the cutoff distance and d = 0.3σ is the decay length.  

 

Number of grooves and peaks encountered  

Figure S2 shows top views of polymer after spreading on substrates with θ = 60° peaks, θ = 60° 

grooves, and texture lengths: (a) L = 25σ, (b) L = 50σ, (c) L = 100σ, and (d) L = 250σ. Dashed red lines 

show the locations of texture peaks, solid blue lines shown the locations of texture grooves, and each 

polymer bead is shown as a small black dot. From Fig. S2 (a) with L = 25σ, we observe that the polymer 

encounters five grooves during spreading and we note that d |  = 242σ is significantly smaller (approximately 

35% decrease) than the isotropic spreading observed on a flat substrate (d |  = 372σ). From Fig. S2 (b) with 
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L = 50σ, we observe that the polymer encounters three grooves during spreading. Comparing to L = 25σ, 

d |  = 309σ increases but remains less than the spreading observed on a flat substrate. From Fig. S2 (c) with 

L = 100σ, we observe that the polymer only encounters one groove, above which the polymer is initially 

placed. Thus, the polymer overcomes zero grooves but two peaks, and we observe that the peaks do not 

inhibit spreading because d |  = 367σ is similar (1.3% decrease) to that obtained on a flat substrate. From 

Fig. S2 (d) with L = 250σ, we observe the polymer only encounters a single groove and no peaks. The 

polymer spreads in a single groove and d |  is unaffected by the texture (d |  = 376σ). 

 

Figure S2. Top views of spread polymer on substrates with θ = 60° peaks, θ = 60° grooves, and texture lengths: (a) 
L = 25σ, (b) L = 50σ, (c) L = 100σ, and (d) L = 250σ. Dashed red lines show the locations of texture peaks, solid blue 

lines shown the locations of texture grooves, and each polymer bead is shown as a small black dot. 

 

Local polymer quantity  

 Figure S3 shows 2D local polymer quantity maps at the peaks and grooves of the five different 

substrates shown in Fig. 4 of the manuscript. Fig. S3 (a) shows a flat substrate with a single polymer quantity 

map for reference. From Fig. S3, we observe dark red regions in texture grooves where polymer beads 

cluster to minimize their energy state. These dark red regions are most pronounced in Fig. S3 (b)-(d), which 

corresponds to the substrates with the smallest minimum potential energy. From Fig. S3, we also observe 

(a) L = 25σ (b) L = 50σ (c) L = 100σ (d) L = 250σ
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that the local polymer quantity locally decreases at texture peaks. Polymer molecules avoid these regions 

to minimize their energy state.  

 

Figure S3. 2D local polymer quantity maps at the peaks and grooves of substrates shown in Fig. 4 of the manuscript 
with different texture shapes and lengths. 

 

Spreading and minimum potential energy correlation  

Figure S4 shows the polymer spreading parallel and perpendicular to the texture versus the texture 

minimum energy for substrates with texture length L = 15σ, corresponding to Fig. 5 (a). We report R-

(c) 120°-120° w/h = 3.46 L = 15σ

(b) 60°-60° w/h = 1.15 L = 15σ
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squared values for the linear best fit (least-squares) to each data set (d |  and d||). From Fig. S4, we observe 

that parallel spreading correlates to the minimum potential energy and that perpendicular spreading 

inversely correlates to the minimum potential energy. 

 

Figure S4. Polymer spreading parallel and perpendicular to the texture versus texture minimum energy for 
substrates with texture length L = 15σ. 

 

 

-23 -21 -19 -17 -15 -13
0

200

300

400

500

600

700

800

900

1000

R2 = 0.86

Minimum energy, Emin [ε]

Sp
re

ad
in

g,
 d

[σ
]

R2 = 0.89

d⊥
d||


