## Activating Hematite Nanoplates *via* Partial Reduction for Electrocatalytic Oxygen Reduction Reaction

Hao Wan, ab Menghua Lv, b Xiaohe Liu, \*a Gen Chen, a Ning Zhang, a Yijun Cao, c Haidong Wang, \*b Renzhi Ma, \*d Guanzhou Qiub

- <sup>a</sup> State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, P.R. China. Email: liuxh@csu.edu.cn
- <sup>b</sup> School of Resources Processing and Bioengineering, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, P.R. China. E-mail: joew@csu.edu.cn
- <sup>c</sup> Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
- d International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. Email: MA.Renzhi@nims.go.jp

| Content   | Page No. | Content    | Page No. |
|-----------|----------|------------|----------|
| Figure S1 | Page S2  | Figure S8  | Page S8  |
| Figure S2 | Page S3  | Figure S9  | Page S9  |
| Figure S3 | Page S4  | Figure S10 | Page S9  |
| Figure S4 | Page S5  | Figure S11 | Page S10 |
| Figure S5 | Page S6  | Table S1   | Page S10 |
| Figure S6 | Page S7  | Table S2   | Page S11 |
| Figure S7 | Page S8  |            |          |



**Figure S1**. CV curves of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub> products. Here,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> composite corresponds to Sample-1h.



**Figure S2**. Polarization curves in  $N_2$ - or  $O_2$ -saturated KOH electrolyte. (a)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoplates, (b) Sample-0.5h, (c) Sample-1h, (d) Sample-3h and (e) Sample-10h.



**Figure S3**. The current densities achieved by the as-prepared electrocatalysts at the potential of 0.4 V vs RHE.



Figure S4. CV curves of (a)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoplates, (b) Sample-0.5h, (c) Sample-1h, (d) Sample-3h and (e) Sample-10h at different scan rates. (f) Anodic and cathodic current densities (denoted as  $j_a$  and  $j_c$ , respectively) of iron oxide samples at the potential of 1.0 V vs RHE as a function of the scan rate. It can be seen that there exists a highly standard linear relationship between the current density and scan rate with all the coefficient of determinations (R<sup>2</sup>) over 0.9965 close to 1, revealing that in such a potential region, all of the iron oxides almost act as an ideal double-layer capacitor.



**Figure S5**. Polarization curves tested using RRDE method. (a) α-Fe<sub>2</sub>O<sub>3</sub> nanoplates, (b) Sample-0.5h, (c) Sample-1h, (d) Sample-3h and (e) Sample-10h.



**Figure S6**. Polarization curves of as-prepared iron oxides tested at different rotating rates. (a)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoplates, (b) Sample-0.5h, (c) Sample-1h, (d) Sample-3h and (e) Sample-10h.



**Figure S7**. (a) Calculated electron transfer number using K-L method and (b)  $j\kappa$  of as-prepared iron oxide materials. Electron transfer number was estimated as 1.57, 3.84, 4.39, 3.88 and 4.03 for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoplates, Sample-0.5h, Sample-1h, Sample-3h and Sample-10h, respectively.



Figure S8. The 1st, 10th and 30th CV curves of Sample-1h.



**Figure S9**. Fe 2p region of Sample-1h after a chronoamperometry measurement at 0.60 V vs RHE for 800 s.



Figure S10. Electrocatalytic oxygen reduction process of 4-electron pathway.



Figure S11. Plausible mechanism for the best performance of Sample-10h.

**Table S1**. Activity comparison of iron oxide materials for electrocatalytic oxygen reduction process in 0.1 M KOH electrolyte.

| Materials                                      | j (mA cm <sup>-2</sup> )<br>@ 0.4 V vs RHE | Tafel slope<br>(mV dec <sup>-1</sup> ) | Electron transfer number | Ref.       |
|------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------------|------------|
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>       | 1.62                                       | 107                                    | 3.19 @ 0.4 V vs RHE      |            |
| Sample-0.5h                                    | 3.88                                       | 89                                     | 3.81 @ 0.4 V vs RHE      |            |
| Sample-1h                                      | 4.90                                       | 76                                     | 3.89 @ 0.4 V vs RHE      | this work  |
| Sample-3h                                      | 4.35                                       | 81                                     | 3.85 @ 0.4 V vs RHE      |            |
| Sample-10h                                     | 3.97                                       | 86                                     | 3.83@ 0.4 V vs RHE       |            |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> /CNTs | 3.72                                       | -                                      | 3.45 @ 0.365 V vs RHE    | <b>S</b> 1 |
| $\alpha\text{-}Fe_2O_3/Ppy/GO$                 | 1.23                                       | -                                      | 3.91 @ 0.4 V vs RHE      | S2         |
| α-Fe <sub>2</sub> O <sub>3</sub> /N-doped CNTs | 3.82                                       | -                                      | 3.37 @ 0.365 V vs RHE    | <b>S</b> 3 |

**Table S2**. Fitting parameters of the electronic components in the equivalent circuit as shown in the inset of Figure 6c.

| Materials                        | $\mathrm{R}_{0}\left(\Omega ight)$ | $\mathbf{R}_{1}\left( \Omega\right)$ | $\mathbf{R}_{2}\left( \Omega\right)$ |
|----------------------------------|------------------------------------|--------------------------------------|--------------------------------------|
| α-Fe <sub>2</sub> O <sub>3</sub> | 66.73                              | 626.8                                | 290.7                                |
| Sample-0.5h                      | 70.85                              | 455.6                                | 141.7                                |
| Sample-1h                        | 64.44                              | 325.6                                | 140.4                                |
| Sample-10h                       | 64.66                              | 392.5                                | 132.2                                |
| Sample-10h                       | 65.22                              | 450.8                                | 140.5                                |

## References

- (S1) Sun, M.; Dong, Y.; Zhang, G.; Qu, L.; Li, J. α-Fe<sub>2</sub>O<sub>3</sub> spherical nanocrystals supported on CNTs as efficient non-noble electrocatalysts for the oxygen reduction reaction. *J. Mater. Chem. A* **2014**, 2(33), 13635–13640, DOI: 10.1039/c4ta02172j.
- (S2) Ren, S.; Ma, S.; Yang, Y.; Mao, Q.; Hao, C. Hydrothermal synthesis of Fe<sub>2</sub>O<sub>3</sub>/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte. *Electrochim. Acta* **2015**, *178*, 179–189, DOI: 10.1016/j.electacta.2015.07.181.
- (S3) Sun, M.; Zhang, G.; Liu, H.; Liu, Y.; Li, J. α- and γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. *Sci. China Mater.* **2015**, *58*(9), 683–692, DOI: 10.1007/s40843-015-0082-x.