SUPPORTING INFORMATION: PART A

Enantioselective Direct Vinylogous Allylic Alkylation of 4-Methylquinolones Under Iridium-Catalysis

Rahul Sarkar, and Santanu Mukherjee*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA
*Corresponding author: E-mail: sm@iisc.ac.in

Table of Contents

A. General information S-2
B Representative examples of (A) bioactive compounds and (B) bioactive natural products S-3 containing 2 -quinolone core structures
C. General procedure for the synthesis of 4-methylquinolones S-3
D. Procedure for the synthesis of allyl carbonates S-11
E. Preliminary screening of N-protecting group of 4-methylquinolones S-12
F. General procedure for the preparation of racemic products S-12
G. Typical procedure for Ir-catalyzed enantioselective allylation of 4-methylquinolones with S-13 allyl carbonates
H. Attempted vinylogous allylic alkylation of 3-cyano-4-ethyl-2-quinolone $\mathbf{1 r}$ S-30
I. Unsuccessful substrates for enantioselective vinylogous allylic alkylation reaction S-31
J. Large scale synthesis of 3aa S-31
K. Procedure for the preparation of alcohol 4 S-32
L. Procedure for the cross-metathesis reaction of 3aa S-33
M. Procedure for the Ir-catalyzed hydroboration of 3aa S-33
N. Procedure for the epoxidation of 3aa S-34
O. Procedure for the selective reduction of the allylic double bond of $\mathbf{3} \mathbf{j a} \& \mathbf{3 a a}$ S-35
P. Procedure for the Wacker oxidation of 3aa S-36
Q. Procedure for the deprotection of 4-methoxybenzyl group of 3aa S-37
R. Procedure for the preparation of 2-chloroquinoline derivative $\mathbf{1 1}$ S-38
S. Procedure for the preparation of quinoline derivative $\mathbf{1 2}$ S-39
T. Procedure for the preparation of thiolactam $\mathbf{1 3}$ S-39
U. Procedure for the preparation of quinolone derivative $\mathbf{1 4}$ S-40
V. Procedure for the deprotection of 4-methoxybenzyl group of 3qa S-41
W. Procedure for the preparation of γ-allyl-2-chloropyridine 16 S-42
X. Procedure for the preparation of amide $\mathbf{1 7}$ S-42
Y. Procedure for the preparation of $\mathbf{1 8}$ S-43
Z. Single crystal X-ray diffraction analysis of 3af S-44

A. General information:

Infrared (FT-IR) spectra were recorded on a Bruker Alfa FT-IR, $\nu_{\max }$ in cm^{-1} and the bands are characterized as broad (br), strong (s), medium (m), and weak (w). NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for ${ }^{1} \mathrm{H}-\mathrm{NMR}$) and 100 MHz (for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left[\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{CD}_{3} \mathrm{OD}: \delta 3.31,\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta 2.50\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{CDCl}_{3}: \delta 77.16$, $\mathrm{CD}_{3} \mathrm{OD}: \delta 49.00,\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta 39.52$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right]$. For ${ }^{1} \mathrm{H}-\mathrm{NMR}$, data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, ddd $=$ doublet of doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz) and integration. High resolution mass spectrometry was performed on XEVO G2-XS QTof instrument. Optical rotations were measured on JASCO P-2000 polarimeter. Melting points were measured in open glass capillary using Buchi M-560 melting point apparatus and the values are uncorrected. Enantiomeric ratios were determined by Shimadzu LC-20AD HPLC instrument and SPD-20A Diode Array detector using stationary phase chiral columns ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$) in comparison with authentic racemic compounds.

Unless stated otherwise, all reactions were carried out with distilled and dried solvents under an atmosphere of nitrogen or argon in oven $\left(120{ }^{\circ} \mathrm{C}\right)$ dried glassware with standard vacuum-line techniques. Organic solvents used for carrying out reactions were dried using standard methods. $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2},(S)$-BINOL and (R)-BINOL were purchased from CombiBlocks, Inc.; (-)-bis[(S)-1-phenylethyl]amine was purchased from Alfa Aesar and used as received. All work up and purification were carried out with reagent grade solvents in air. Thinlayer chromatography was performed using Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated plates (0.25 mm). Column chromatography was performed using silica gel (230-400 or 100-200 mesh). NMR yields were determined by using mesitylene as an internal standard. Unless otherwise noted, all reported yields of the Ir-catalyzed allylation reactions are isolated yields. Chiral ligands used in this work were prepared according to literature procedures. ${ }^{1}$

[^0]B. Representative examples of (A) bioactive compounds and (B) bioactive natural products containing 2-quinolone core structures:

(B)

orixalone A

haplamine

viridicatin

C. General procedure for the synthesis of 4-methylquinolones:

General procedure A: Starting material \mathbf{S} and substituted 4-methylquinolones (1a-1h) were prepared according to the previously reported procedure. ${ }^{2}$

In an oven dried two neck round-bottom flask, equipped with reflux condenser, \mathbf{S} (1.0 equiv.) was taken in absolute benzene ($4.0 \mathrm{~mL} / \mathrm{mmol}$ of \mathbf{S}) under argon. To this, a solution of

[^1]2-cyanoacetyl chloride (2.0 equiv.) in absolute benzene ($1.0 \mathrm{~mL} / \mathrm{mmol}$ of \mathbf{S}) was added and the resulting solution was refluxed at $80^{\circ} \mathrm{C}$ for 24 h . Solvent was removed under reduced pressure and the residue was purified by silica-gel flash column chromatography to obtain 1.

General procedure B: Substituted 4-methylquinolones ($\mathbf{1 j} \mathbf{- 1 m}$) were prepared according to the modified literature procedure. ${ }^{3}$

In an oven dried round-bottom flask, equipped with reflux condenser, 2^{\prime}-aminoacetophenone (1.0 equiv.) was taken along with $\mathrm{NH}_{4} \mathrm{OAc}$ (2.5 equiv.) under air. To this, ethyl 2-cyanoacetate (1.5 equiv.) was added and the resulting solution was heated to $165^{\circ} \mathrm{C}$ for 2 h. The mixture was then cooled to r.t., EtOH ($0.8 \mathrm{~mL} / \mathrm{mmol}$ of 2^{\prime}-aminoacetophenone) was added and the mixture was triturated for 6 h . The precipitated solid is then filtered, washed with petroleum ether and dried under high vacuum to yield 2-quinolone $\mathbf{1 n}$.

4-Methylquinolones $\mathbf{1 n}$ (1.0 equiv.) was taken along with NaH (55% assay, 1.1-1.3 equiv.) in an oven dried round-bottom flask under argon. To this, dry DMF ($4.0 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 n}$) was added and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . A solution of alkyl halide (1.0-1.3 equiv.) in dry DMF ($1.2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 n}$) was then added dropwise to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$, warmed to r.t. and stirred for 12-24 h. Reaction mixture was poured into ice-cold water, stirred for 15 min and extracted with EtOAc. Combined organic layer was washed with water, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a light-yellow oil. This residue was purified by silica-gel flash column chromatography to obtain 1.

Compound 1a: Prepared according to the general procedure $\mathrm{A}, \mathbf{S a}(\mathrm{R}=\mathrm{H}, 2.14 \mathrm{~g}, 8.382 \mathrm{mmol}$,
 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid ($1.89 \mathrm{~g}, 6.210$ mmol, 74% yield); m.p. $157-159{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (w), 1647 (s), 1610 (m), 1511 (m), 1249 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.83-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27$

[^2]$(\mathrm{m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,159.0,156.8,139.7,133.8,128.3,127.5,126.8$, 123.2, 119.9, 115.9, 115.2, 114.4, 107.2, 55.3, 46.0, 18.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 327.1109$, Found: 327.1111.

Compound 1b: Prepared according to the general procedure A, $\mathbf{S b}(\mathrm{R}=3-\mathrm{Me}, 497.0 \mathrm{mg}, 1.845$
 mmol, 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid ($537.0 \mathrm{mg}, 1.687$ mmol, 91% yield); m.p. $216-217{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2923 (w), 2226 (m), 1646 (s$), 1563$ (m), 1510 (m), 1248 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 159.1,158.9,156.4,137.8,135.1,132.9,128.3,127.7,126.5$, 119.9, 115.8, 115.4, 114.4, 107.2, 55.4, 46.0, 20.9, 18.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 341.1266$, Found: 341.1268.

Compound 1c: Prepared according to the general procedure A, $\mathbf{S c}(\mathrm{R}=4-\mathrm{Me}, 130.0 \mathrm{mg}, 0.483$
 mmol, 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow sticky mass (136.0 mg , $0.427 \mathrm{mmol}, 88 \%$ yield); FT-IR (Thin film): 2225 (w), 1650 (s), 1611 (s), 1512 (w), 1250 (m), 1029 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~}{ }_{3}$): $\delta 7.68$ (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 159.2, 159.1, 156.5, 145.2, 139.9, 128.3, 127.7, 126.7, 124.7, 117.8, 116.0, 115.4, 114.4, 106.1, 55.4, 45.9, 22.5, 18.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 341.1266$, Found: 341.1263.

Compound 1d: Prepared according to the general procedure A, Sd ($\mathrm{R}=3-\mathrm{OMe}, 445.0 \mathrm{mg}$,
 $1.560 \mathrm{mmol}, 1.0$ equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($3 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid (510.0 $\mathrm{mg}, 1.525 \mathrm{mmol}, 98 \%$ yield); m.p. $175-177{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (w), 1644 (s), 1563 (m), 1508 (s , 1247 (m), 1034 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~}$ CDCl $_{3}$): $\delta 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2 H), 5.43 ($\mathrm{s}, 2 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $159.0,158.5,155.9,155.2,134.2,128.2,127.6,122.2,120.6,117.2,115.3,114.3,108.6,107.5$, 55.8, 55.3, 46.0, 18.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 357.1215$, Found: 357.1213.

Compound 1e: Prepared according to the general procedure A, Se ($\mathrm{R}=3-\mathrm{F}, 355.0 \mathrm{mg}, 1.299$
 mmol, 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($3 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid ($308.0 \mathrm{mg}, 0.955$ mmol, 74% yield); m.p. $203-205{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2228 (w), 1650 (s), 1566 (m), 1509 (m), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~} \mathbf{H}_{3}$): $\delta 7.47$ (dd, $J=$ $9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), $6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}$ ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.3,158.6,158.1(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 155.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 136.4,128.2,127.3$, 121.7 (d, $J=23.8 \mathrm{~Hz}$), 120.9 (d, $J=8.6 \mathrm{~Hz}$), 117.8 (d, $J=8.3 \mathrm{~Hz}$), 114.9, 114.5, 112.1 (d, $J=$ 23.5 Hz), 108.6, 55.4, 46.4, 18.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 345.1015, Found: 345.1014.

Compound 1f: Prepared according to the general procedure A, $\mathbf{S f}(\mathrm{R}=3-\mathrm{Cl}, 454.0 \mathrm{mg}, 1.570$
 mmol, 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($1-2 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid (518.0 mg , $1.529 \mathrm{mmol}, 97 \%$ yield); m.p. 226-228 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2228 (w), 1652 (s , 1513 (m), 1249 (m), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ 7.77 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=9.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3,158.6,155.5,138.3,133.7,129.0,128.2,127.2,126.2$, $121.0,117.5,114.8,114.6,108.6,55.4,46.3,18.6$; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 361.0720$, Found: 361.0719.

Compound 1g: Prepared according to the general procedure A, $\mathbf{S g}(\mathrm{R}=3-$
 $\mathrm{Br}, 350.0 \mathrm{mg}, 1.047 \mathrm{mmol}, 1.0$ equiv.), reaction time 24 h , purified by silicagel flash column chromatography ($1-2 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow solid ($393.0 \mathrm{mg}, 1.025 \mathrm{mmol}$, 98% yield); m.p. $215-217{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2228 (w), 1651 (s), 1514 (m), 1249 (m), 1029 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,158.5,155.5,138.6,136.4,129.2,128.2,127.1,121.4$, 117.7, 116.4, 114.8, 114.4, 108.3, 55.4, 46.2, 18.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 405.0215$, Found: 405.0214.

Compound 1h: Prepared according to the general procedure A, $\mathbf{S h}\left(\mathrm{R}=4-\mathrm{CF}_{3}, 317.0 \mathrm{mg}, 0.980\right.$
 mmol, 1.0 equiv.), reaction time 24 h , purified by silica-gel flash column chromatography ($1-2 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow sticky mass (133.0 $\mathrm{mg}, 0.357 \mathrm{mmol}, 36 \%$ yield); FT-IR (Thin film): 2229 (w), 1658 (s), 1513 (m), 1250 (m), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.94$ (d, $J=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.49(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.4,158.6,155.9$, $155.2,139.6,134.7(\mathrm{q}, J=33.0 \mathrm{~Hz}), 128.5,127.9,126.9,123.2(\mathrm{q}, J=273 \mathrm{~Hz}), 122.0,119.4(\mathrm{q}$, $J=3.3 \mathrm{~Hz}$), 114.5, $113.0(\mathrm{q}, J=4.4 \mathrm{~Hz}$), 109.5, 55.3, 46.3, 18.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 395.0983, Found: 395.0981.

Compound 1i: Compound $\mathbf{1 i}$ was prepared from compound $\mathbf{1 j}$ (prepared following the general procedure B, see below) according to the following scheme:

In an oven dried 25 mL round-bottom flask, $\mathbf{1 j}(200.0 \mathrm{mg}, 1.009 \mathrm{mmol}, 1.0$ equiv.) was taken in 1.3 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . When all the $\mathbf{1} \mathbf{j}$ was dissolved to give a pale-yellow solution, $\mathrm{KNO}_{3}(107.0 \mathrm{mg}, 1.059 \mathrm{mmol}, 1.05$ equiv.) was added and the resulting solution was stirred for 4 h . The reaction mixture was poured into ice-cold water to get a white precipitate, which was then filtered through sintered glass crucible and washed with water. The resulting solid was then kept in the crucible with hot EtOH for 10 min . After that, EtOH was removed and dried under high vacuum to yield 2-quinolone $\mathbf{1 i}$ as a light yellow solid ($163.0 \mathrm{mg}, 0.670 \mathrm{mmol}, 66 \%$ yield); m.p. 273-275 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2232 (w), 1654 (s), 1604 (s), 1332 (s), 1288 (s), 1084 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ D M S O - d) : ~} \delta 8.73$ (s , $1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0}$ MHz, DMSO-d $\mathbf{6}$): δ 158.0, 157.3, 143.9, 142.1, 127.7, 123.1, 118.6, 117.3, 114.9, 107.6, 30.5, 18.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$244.0722, Found: 244.0720. The position of NO_{2} group was determined by 1D NOE experiment (See Supporting Information: Part B).

Compound 1j: Prepared according to the general procedure B: 2-quinolone 1n ($500.0 \mathrm{mg}, 2.714$
 mmol, 1.0 equiv.) was taken along with NaH (55% assay, $130.0 \mathrm{mg}, 2.985 \mathrm{mmol}$, 1.1 equiv.) in an oven dried round-bottom flask under argon. To this, dry DMF $(4.0 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 n})$ was added and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of methyl iodide ($0.22 \mathrm{~mL}, 3.529 \mathrm{mmol}, 1.3$ equiv.) in dry DMF ($1.2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{1 n}$) was then added dropwise at $0^{\circ} \mathrm{C}$, warmed to r.t. and stirred for 12 h . The reaction mixture was poured into ice-cold water, stirred for 15 min . The precipitated solid was then filtered, washed with water and dried under high vacuum to yield 2-quinolone $\mathbf{1} \mathbf{j}$ as an off-white solid ($432.0 \mathrm{mg}, 2.179 \mathrm{mmol}, 80 \%$ yield); m.p. $244-246^{\circ} \mathrm{C}$; FT-IR (Thin film): 2225 (m), 1648 (s , 1557 (m), 1454 (m), 1090 (w); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{D M S O}-\mathrm{d}_{6}$): $\delta 7.98$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$,
2.72 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\mathbf{d}_{6}\right): \delta 157.9,157.1,139.8,134.1,127.2,122.9$, 118.8, 115.6, 105.5, 29.7, 18.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 199.0871$, Found: 199.0873.

Compound 1k: Prepared according to the general procedure B , 2-quinolone 1 n (500.0 mg ,
 $2.714 \mathrm{mmol}, 1.0$ equiv.), ethyl iodide ($0.24 \mathrm{~mL}, 2.985 \mathrm{mmol}, 1.1$ equiv.), NaH (55% assay, $85.0 \mathrm{mg}, 3.523 \mathrm{mmol}, 1.3$ equiv.), reaction time 12 h , purified by silica-gel flash column chromatography ($5-6 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); yellow solid $\left(117.0 \mathrm{mg}, 0.551 \mathrm{mmol}, 20 \%\right.$ yield); m.p. $228-230^{\circ} \mathrm{C}$; FT-IR (Thin film): 2220 (m), 1644 (s), 1454 (m), 1199 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 158.2,156.1,139.3,133.9,127.0$, 123.0, 119.8, 115.2, 114.9, 107.2, 38.0, 18.4, 12.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OH}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 213.1028$, Found: 213.1029.

Compound 11: Prepared according to the general procedure B, 2-quinolone 1n ($500.0 \mathrm{mg}, 2.714$
 mmol, 1.0 equiv.), benzyl bromide ($0.34 \mathrm{~mL}, 2.845 \mathrm{mmol}, 1.05$ equiv.), NaH (55% assay, $85.0 \mathrm{mg}, 3.523 \mathrm{mmol}, 1.3$ equiv.), reaction time 12 h , purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); off-white solid ($273.0 \mathrm{mg}, 0.995 \mathrm{mmol}, 37 \%$ yield); m.p. $198-200^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (w), 1648 (s), 1559 (w), 1452 (m), 1316 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~} \mathbf{H}_{3}$): δ $7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H})$, 2.79 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 158.9,156.8,139.6,135.5,133.9,128.9,127.6$, 126.8, 126.7, 123.3, 119.8, 115.9, 115.1, 107.1, 46.5, 18.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 275.1184$, Found: 275.1181.

Compound 1m: Prepared according to the general procedure B, 2-quinolone 1 n (500.0 mg ,
 $2.714 \mathrm{mmol}, 1.0$ equiv.), allyl bromide ($0.25 \mathrm{~mL}, 2.845 \mathrm{mmol}, 1.05$ equiv.), NaH (55% assay, $85.0 \mathrm{mg}, 3.523 \mathrm{mmol}, 1.3$ equiv.), reaction time 12 h , purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$); off-white solid ($129.0 \mathrm{mg}, 0.575 \mathrm{mmol}, 21 \%$ yield); m.p. $185-187^{\circ} \mathrm{C}$; FT-IR (Thin film): 2217 (m), 1641 (s), 1445 (m), 1187 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~} \mathbf{N O}_{3}$): $\delta 7.83$ (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $158.4,156.6,139.6,133.8,131.0,126.8,123.2,119.7,117.9,115.7,115.1,107.2,45.2,18.5$; HRMS (ESI+): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$225.1028, Found: 225.1027.

Compound 1n: Prepared according to the general procedure B, 2^{\prime}-aminoacetophenone (4.0 mL ,
 $32.907 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{NH}_{4} \mathrm{OAc}(6.34 \mathrm{~g}, 82.500 \mathrm{mmol}, 2.5$ equiv.), 2cyanoacetate ($5.3 \mathrm{~mL}, 49.400 \mathrm{mmol}, 1.5$ equiv.), reaction time 2 h , off-white solid ($2.6 \mathrm{~g}, 14.115 \mathrm{mmol}, 43 \%$ yield); m.p. $328-330^{\circ} \mathrm{C}$; FT-IR (Thin film): 2219 (m), 1591 (s), 1425 (m), 749 (s); ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - d 6) : ~} \delta 10.91$ (bs, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (100 MHz, DMSO-d $\mathbf{6}$): $\delta 158.6,158.5,139.1,133.7,126.5,122.8,118.0,116.1,115.6$, 105.9, 18.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 185.0715$, Found: 185.0716.

Compound 10: Prepared according to the following scheme:

In an oven dried round-bottom flask, equipped with reflux condenser, 2-amino-3acetylpyridine ($500.0 \mathrm{mg}, 3.670 \mathrm{mmol}, 1.0$ equiv.) was taken along with $\mathrm{NH}_{4} \mathrm{OAc}(708.0 \mathrm{mg}$, $9.180 \mathrm{mmol}, 2.5$ equiv.) under air. To this, ethyl 2-cyanoacetate ($0.59 \mathrm{~mL}, 5.510 \mathrm{mmol}, 1.5$ equiv.) was added and the resulting solution was heated to $165^{\circ} \mathrm{C}$ for 2 h . The mixture was then cooled to r.t., $\mathrm{EtOH}(0.8 \mathrm{~mL} / \mathrm{mmol}$ of 2-amino-3-acetylpyridine) was added and the mixture was triturated for 6 h . The precipitated solid was then filtered, washed with petroleum ether and dried under high vacuum to yield So as an off-white solid ($472.0 \mathrm{mg}, 2.549 \mathrm{mmol}, 69 \%$ yield), which was used for the next step without further purification.

So ($254.0 \mathrm{mg}, 1.372 \mathrm{mmol}, 1.0$ equiv.) was taken along with $\mathrm{NaH}(55 \%$ assay, $66.0 \mathrm{mg}, 1.510$ mmol, 1.1 equiv.) in an oven dried round-bottom flask under argon. To this, dry DMF (4.0 $\mathrm{mL} / \mathrm{mmol}$ of $\mathbf{S o}$) was added and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of methyl iodide ($0.11 \mathrm{~mL}, 1.783 \mathrm{mmol}, 1.3$ equiv.) in dry DMF ($1.2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{S o}$) was the added dropwise at $0{ }^{\circ} \mathrm{C}$, warmed to r.t. and stirred for $12-24 \mathrm{~h}$. The reaction mixture was then poured into ice-cold water and stirred for 15 min . The precipitated solid was then filtered, washed with water and dried under high vacuum to yield 10 as an off-white solid (185.0 mg , 0.929 mmol, 68% yield); m.p. 203-205 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (w), 1648 (s), 1590 (m), $1450(\mathrm{~m}), 1049$ (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.73(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (d, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=4.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.4,155.0,153.0,149.8,135.1,119.0,114.9,114.6,108.3,29.0,17.7$; HRMS (ESI+): Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$200.0824, Found: 200.0824 .

Compound $\mathbf{1 p}$: Compound $\mathbf{1 p}$ was prepared from compound $\mathbf{1} \mathbf{j}$ according to the following scheme:

In an oven dried 25 mL round-bottom flask, $\mathbf{1 j}$ ($205.0 \mathrm{mg}, 1.034 \mathrm{mmol}, 1.0$ equiv.) was taken along with $\mathrm{P}_{2} \mathrm{~S}_{5}$ ($690.0 \mathrm{mg}, 3.102 \mathrm{mmol}, 3.0$ equiv.) under argon. To this, 5.0 mL pyridine was added and the resulting solution was refluxed at $130{ }^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was then diluted with 5.0 mL water, quenched with 2.0 mL concentrated HCl and extracted with EtOAc. Combined organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow oil. This residue was purified by silica-gel flash column chromatography ($2 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain $\mathbf{1 p}$ as a yellow solid ($89.0 \mathrm{mg}, 0.415 \mathrm{mmol}$, 40% yield); m.p. 275-277 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2223 (w), 1595 (s), 1547 (s), 1445 (m), 1218 (m), 1030 (w); ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l 3): ~ \delta ~ 7.90-7.88 ~(m, ~ 1 H), ~ 7.80-7.76 ~(m, ~ 1 H), ~ 7.61 ~(d, ~ J ~$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 180.8,149.4,140.9,134.3,126.9,124.9,122.9,118.7,116.4,116.1,38.7,18.6 ;$ HRMS (ESI+): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{SH}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$215.0643, Found: 215.0643.

Compound 1q: Prepared according to the following scheme:

3-Cyano-4-methyl-2-pyridone ($500.0 \mathrm{mg}, 3.720 \mathrm{mmol}, 1.0$ equiv.) was taken along with NaH (55% assay, $211.0 \mathrm{mg}, 4.840 \mathrm{mmol}, 1.3$ equiv.) in an oven dried round-bottom flask under argon. To this, dry DMF ($4 \mathrm{~mL} / \mathrm{mmol}$ of 3-cyano-4-methyl-2-pyridone) was added and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of 4-methoxybenzyl bromide (825.0 $\mathrm{mg}, 4.100 \mathrm{mmol}, 1.1$ equiv.) in dry DMF ($1.2 \mathrm{~mL} / \mathrm{mmol}$ of 3-cyano-4-methyl-2-pyridone) was then added dropwise at $0{ }^{\circ} \mathrm{C}$, warmed to r.t. and stirred for 12 h . The reaction mixture was poured into ice-cold water, stirred for 15 min and extracted with EtOAc. Combined organic layer was washed with water, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a brown oil. This residue was purified by silica-gel flash column chromatography (2% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) yield $\mathbf{1 q}$ as a peach colored solid ($518.0 \mathrm{mg}, 2.037 \mathrm{mmol}, 55 \%$ yield); m.p. 133-135 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2223 (w), 1654 (s), 1514 (s), 1250 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}$-NMR
(400 MHz, CDCl ${ }_{3}$): $\delta 7.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 160.1,159.7,159.5,140.5,130.1,127.2,115.2,114.4,108.4,104.5,55.3,52.0,21.0$; HRMS (ESI+): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$277.0953, Found: 277.0951.

Compound 1r (3-cyano-4-ethyl-2-quinolone): Prepared according to the general procedure A:

1-(2-((4-Methoxybenzyl)amino)phenyl)propan-1-one (350.0 mg, $1.299 \mathrm{mmol}, 1.0$ equiv.), reaction time 12 h , purified by silica-gel flash column chromatography ($2-3 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); light yellow sticky solid ($403.0 \mathrm{mg}, 1.266 \mathrm{mmol}, 97 \%$ yield); m.p. $159-161{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2926 (m), 2226 (m), 1648 (s), 1511 (m), 1249 (m), 1179 (m), 1034 (m); ${ }^{\mathbf{1} H} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.84(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.19(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 162.5$, $159.2,159.1,140.3,133.8,128.3,127.6,126.7,123.2,118.7,116.2,114.9,114.4,106.2,55.4$, 46.1, 25.5, 14.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 341.1266, Found: 341.1266.

D. Procedure for the synthesis of allyl carbonates:

Allyl carbonates (2a-t) were prepared according to the previously reported procedure. ${ }^{4}$

[^3]
E. Preliminary screening of N-protecting group of 4-methylquinolones: ${ }^{a}$

(
${ }^{a}$ Reaction conditions: $3 \mathrm{~mol} \%\left[\operatorname{lr}(\mathrm{COD}) \mathrm{Cl}_{2}, 6 \mathrm{~mol} \% \mathbf{L}, 0.20 \mathrm{mmol}\right.$ of $\mathbf{1}, 0.24 \mathrm{mmol}$ of $\mathbf{2 a}$ and 0.2 mmol of DABCO in 1.0 mL solvent. The catalyst was prepared via $n-\mathrm{PrNH} \mathrm{H}_{2}$ activation. Yields correspond to the isolated product after chromatographic purification. Er was determined by HPLC analysis on a chiral stationary phase. ${ }^{b}$ For N-unprotected 2-quinolone (1n), N-allyl 2-quinolone was formed as $1.3: 1 \mathrm{~b} / \mathrm{l}$ and with 38% yield. n.d. $=$ not determined.

F. General procedure for the preparation of racemic products (rac-3):

In a glass-vial $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.003 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and ligand $\mathbf{L} 1(0.012 \mathrm{mmol}, 12$ $\mathrm{mol} \%$) were taken with 0.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was stirred at r.t. for 15 min . To this, was added $\mathbf{1}(0.100 \mathrm{mmol}, 1.0$ equiv.) followed by addition of $\mathbf{2}(0.120 \mathrm{mmol}, 1.2$
equiv.) in $0.2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The resulting suspension was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h . The crude mixture was purified by preparative TLC (Merck silica-gel $60 \mathrm{~F}_{254}$ pre-coated plates of 0.25 mm thickness) to obtain the racemic γ-allylated product (rac-3) samples for HPLC analysis.

G. Typical procedure for Ir-catalyzed enantioselective allylation of 4-methylquinolones with allyl carbonates:

In an oven and vacuum-dried reaction tube, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and ligand $\left(S_{a}, S, S\right)$-L $(0.012 \mathrm{mmol}, 6 \mathrm{~mol} \%)$ were taken with 0.5 mL of absolute THF under positive argon pressure, followed by the addition of 0.3 mL dry $n-\mathrm{PrNH}_{2}$. The solution was heated at 50 ${ }^{\circ} \mathrm{C}$ for 30 min , after which all volatiles were removed under vacuum to obtain a yellow solid. To this, 4-methylquinolones $\mathbf{1}$ ($0.200 \mathrm{mmol}, 1.0$ equiv.) and DABCO ($22.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were introduced under positive argon pressure, followed by 0.8 mL of absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the suspension was stirred at $50{ }^{\circ} \mathrm{C}$ for 5 min . After 5 min , a solution of allyl carbonate 2 (0.240 mmol , 1.2 equiv.) in 0.2 mL absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to it. The resulting mixture was purged with argon and the reaction tube was sealed with a glass stopper. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ until TLC (30% EtOAc in petroleum ether) revealed complete consumption of $\mathbf{1}$. The reaction mixture was then allowed to attain ambient temperature, diluted with 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5.0 mL of 1 N HCl solution. Organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4.0 \mathrm{~mL})$. Combined organic layer was washed with brine (10.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a reddish-brown oil. This residue was purified by silica-gel flash column chromatography (13-15\% EtOAc in petroleum ether) to obtain 3 .

Compound 3aa: Reaction performed on 0.1 mmol scale of $\mathbf{1 a}$; purified by silica-gel flash
 column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum ether); Off-white solid (38.0 $\mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$ yield); m.p. $175-177{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): $3015(\mathrm{w})$, 2227 (m), 1649 (s), 1607 (s), 1509 (s), 1452 (m), 1305 (m), 1249 (s); ${ }^{1} \mathbf{H}-N M R$ (400 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 7.80$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60-7.56 (m, 1H), 7.39 (d, $J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.22-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.62$ $(\mathrm{dd}, J=12.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=12.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta$
$159.1,158.9,158.2,141.9,140.0,139.1,133.7,128.9,128.1,127.5,127.3,126.8,123.2,119.1$, $116.4,116.2,115.3,114.4,107.9,55.3,50.8,46.0,38.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 443.1735$, Found: 443.1736; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-115.3$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 237 \mathrm{~nm}, \tau_{\text {minor }}=17.4 \mathrm{~min}, \tau_{\text {major }}=22.6 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3aa was assigned in analogy with 3af.

Compound 3ab: Purified by silica-gel flash column chromatography ($14 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($71.0 \mathrm{mg}, 0.163 \mathrm{mmol}, 82 \%$ yield); m.p. $167-169{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2927 (w), 2226 (m), 1649 (s), 1608 (m), 1510 (m), 1451 (m), 1249 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.81$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60-7.56 (m, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 6 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.20-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H})$, 3.63-3.57 (m, 1H), 3.54-3.50 (m, 1H), $2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.1,158.9,158.3,140.0,139.4,138.9,136.9,133.7,129.6,128.2,127.5,127.3$, $126.8,123.1,119.1,116.2,116.1,115.4,114.4,107.9,55.4,50.6,46.0,38.5,21.1$; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 457.1892$, Found: 457.1896; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-35.8\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane $\left./ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 240 \mathrm{~nm}, \tau_{\text {minor }}=16.1 \mathrm{~min}, \tau_{\text {major }}=19.5 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ab was assigned in analogy with 3af.

Compound 3ac: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Off-white solid ($84.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$ yield); m.p. $162-164{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2960 (m), 2227 (m), 1650 (s), 1511 (s$), 1453$ (s$), 1378$ (m), 1249 (s), 1180 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.78$ ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.55 (m, 1H), 7.39 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29-7.25 (m, 1H), 7.19 (s, 4H), 7.15 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.21-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,158.9,158.4,147.9$, $139.9,139.4,139.2,133.6,128.1,127.5,127.3,126.9,126.8,123.1,119.1,116.2,115.4,114.4$, 107.8, 55.3, 50.6, 46.0, 38.5, 33.8, 24.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 463.2386, Found: 463.2386; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-34.8$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC
analysis using Daicel Chiralpak IG column (60:40 n-Hexane $/ i$-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 234$ $\mathrm{nm}, \tau_{\text {major }}=18.1 \mathrm{~min}, \tau_{\text {minor }}=22.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ac was assigned in analogy with 3af.

Compound 3ad: Purified by silica-gel flash column chromatography ($18 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($88.0 \mathrm{mg}, 0.195 \mathrm{mmol}, 98 \%$ yield); m.p. $156-158{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2837 (w), 2226 (m), 1649 (s), 1510 (s), 1453 (s), 1250 (s), 1179 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 4 \mathrm{H})$, 6.18-6.09 (m, 1H), $5.51(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $159.1,158.9,158.7,158.3,139.9,139.5,133.8,133.7,128.5,128.1,127.5,126.8,123.1,119.1$, 116.2, 115.9, 115.4, 114.4, 114.2, 107.9, 55.3, 50.0, 46.0, 38.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 473.1841$, Found: 473.1844; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-46.3$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 350 \mathrm{~nm}, \tau_{\text {minor }}=23.7 \mathrm{~min}, \tau_{\text {major }}=32.4 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ad was assigned in analogy with 3af.

Compound 3ae: Purified by silica-gel flash column chromatography (13\% EtOAc in petroleum
 ether); Off-white solid ($55.0 \mathrm{mg}, 0.113 \mathrm{mmol}, 56 \%$ yield); m.p. $186-188{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2227 (w), 1650 (s), 1610 (m), 1325 (s), 1121 (m), 1068 (m); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.42-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.15$ (ddd, $J=17.2,10.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=13.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=$ $13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,158.8,157.6,145.9,140.1,138.2$, $133.9,129.6(\mathrm{q}, J=32.0 \mathrm{~Hz}), 128.2,128.0,127.4,126.6,125.9(\mathrm{q}, J=4.1 \mathrm{~Hz}), 124.1(\mathrm{q}, J=$ 272.2 Hz), 123.2, 118.9, 117.4, 116.4, 115.3, 114.4, 108.1, 55.4, 50.6, 46.1, 38.0; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 489.1790$, Found: 489.1797; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-35.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IE column (85:15 n-Hexane $\left./ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 305 \mathrm{~nm}, \tau_{\text {major }}=38.4 \mathrm{~min}, \tau_{\text {minor }}=41.2 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ae was assigned in analogy with 3af.

Compound 3af: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Off-white solid ($98.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 98 \%$ yield); m.p. $176-178{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2226 (w), 1647 (s), 1608 (m), 1554 (m), 1248 (m), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H})$, 7.42$7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.16-6.07 (m, 1H), $5.52(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.61-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $159.1,158.8,157.8,140.8,140.0,138.6,133.8,131.9,129.3,128.1,127.4,126.6,123.2,121.1$, 118.9, 116.8, 116.3, 115.3, 114.4, 108.0, 55.3, 50.1, 46.0, 38.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 521.0841, Found: 521.0844; Optical rotation: $[\alpha] \mathrm{D}^{21}-48.4$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 290 \mathrm{~nm}, \tau_{\text {minor }}=19.4 \mathrm{~min}, \tau_{\text {major }}=23.3 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3af was determined by single crystal X-Ray diffraction analysis.

Compound 3ag: Purified by silica-gel flash column chromatography (13\% EtOAc in petroleum
 ether); Off-white solid ($80.0 \mathrm{mg}, 0.176 \mathrm{mmol}, 88 \%$ yield); m.p. $170-171{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 3010 (w), 2226 (m), 1649 (s$), 1509$ (m), 1452 (m), 1249 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.39$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72$ (m, 1H), 3.61-3.56 (m, 1H), 3.50 (dd, $J=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,158.8,157.8,140.3,140.0,138.7,133.8,133.1,129.1,128.9,128.2$, 127.4, 126.7, 123.2, 119.0, 116.8, 116.3, 115.3, 114.4, 108.1, 55.4, 50.1, 46.1, 38.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 477.1346$, Found: 477.1342; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-52.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20{ }^{\circ} \mathrm{C}, 240 \mathrm{~nm}, \tau_{\text {minor }}=17.1 \mathrm{~min}, \tau_{\text {major }}=22.3 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ag was assigned in analogy with 3af.

Compound 3ah: Purified by silica-gel flash column chromatography ($10 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($70.0 \mathrm{mg}, 0.140 \mathrm{mmol}, 70 \%$ yield); m.p. $155-157{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2226 (m), 1648 (s), 1609 (s$), 1513$ (s$), 1452$ (m), 1249 (m), 1070 (w); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H})$, 7.40-7.35 (m, 3H), 7.31-7.27 (m, 1H), 7.21-7.17 (m, 2H), 7.14 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 3 \mathrm{H})$, 3.76-3.70 (m, 1H), 3.61-3.56 (m, 1H), 3.51 (dd, $J=13.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.1,158.8,157.7,144.1,140.1,138.3,133.8,130.6,130.5,130.4,128.1,127.4$, $126.6,126.2,123.2,122.9,118.9,117.1,116.3,115.3,114.4,108.1,55.4,50.4,46.1,38.0$; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 521.0841$, Found: 521.0839; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-29.4\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20{ }^{\circ} \mathrm{C}, 237 \mathrm{~nm}, \tau_{\text {minor }}=17.7 \mathrm{~min}, \tau_{\text {major }}=20.7 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ah was assigned in analogy with 3af.

Compound 3ai: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Off-white solid ($42.0 \mathrm{mg}, 0.096 \mathrm{mmol}, 48 \%$ yield); m.p. $157-159{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2839 (w), 2227 (m), 1649 (s), 1511 (s), 1249 (s), 1032 (m); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{ddd}, J=17.3,10.0,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=13.1,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.52 (dd, $J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 163.0(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 159.2$, $158.8,157.8,144.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 140.1,138.5,133.8,130.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 128.1,127.4$, $126.6,123.2,123.1(\mathrm{~d}, ~ J=2.8 \mathrm{~Hz}), 119.0,117.0,116.3,115.3,114.6(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.5$, 114.3 (d, $J=21.1 \mathrm{~Hz}$), 108.1, $55.4,50.4,46.1,38.1$; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{H}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 439.1822$, Found: 439.1826; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-40.3$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 231 \mathrm{~nm}$, $\tau_{\text {minor }}=16.8 \mathrm{~min}, \tau_{\text {major }}=23.1 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ai was assigned in analogy with 3af.

Compound 3aj: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Off-white solid ($92.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 98 \%$ yield); m.p. $164-166{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2927 (w), 2361 (s), 2225 (m), 1648 (s), 1607 (m), 1555 (m), 1248 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.87-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.66$ $(\mathrm{s}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.29-6.20(\mathrm{~m}$, $1 \mathrm{H}), 5.52(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.0,158.8,158.2,139.9,139.3$, $139.0,133.7,133.5,132.6,128.7,128.1,127.7,127.4,126.7,126.3,125.9,125.7,123.2,119.0$, 116.7, 116.2, 115.4, 114.3, 107.9, 55.3, 51.0, 46.0, 38.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 493.1892$, Found: 493.1894; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-25.8$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 231 \mathrm{~nm}, \tau_{\text {minor }}=22.3 \mathrm{~min}, \tau_{\text {major }}=26.7 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3aj was assigned in analogy with 3af.

Compound 3ak: Purified by silica-gel flash column chromatography ($14 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($77.0 \mathrm{mg}, 0.157 \mathrm{mmol}, 79 \%$ yield); m.p. $146-148{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2926 (w), 2360 (m), 2226 (m), 1649 (s), 1606 (m), 1555 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta 7.76$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61-7.57 (m, $1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.08$ (ddd, $J=17.2,10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}$, $3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (dd, $J=13.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (dd, $J=13.1,6.9$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,158.7,157.4,142.0,140.1,138.0,133.9$, $132.8,131.4,130.9,129.6,128.1,127.3,126.9,126.5,123.3,118.9,117.4,116.4,115.3,114.4$, 108.1, 55.4, 49.8, 46.1, 37.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 511.0956, Found: 511.0959; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-38.5$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 237 \mathrm{~nm}$, $\tau_{\text {minor }}=17.4 \mathrm{~min}, \tau_{\text {major }}=22.1 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ak was assigned in analogy with 3af.

Compound 3al: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Light yellow solid ($91.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 98 \%$ yield); m.p. $133-135{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (m), 1648 (s), 1508 (s), 1492 (s), 1247 (s$), 1036$ (m);
 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.89(\mathrm{~m}$, $2 \mathrm{H}), 5.50(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}$, 1 H), 3.47 (dd, $J=12.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.0,158.8,158.1$, $147.9,146.6,139.9,139.2,135.6,133.7,128.1,127.4,126.7,123.1,120.5,118.9,116.2,116.1$, $115.3,114.3,108.4,107.8,101.1,55.3,50.3,45.9,38.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 487.1634$, Found: 487.1634; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-60.5$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. To determine the enantiomeric ratio, compound 3al was converted to the corresponding hydrogenated compound 3al' by using catalytic Pd / C under H_{2} balloon pressure. The enantiomeric ratio of compound 3al' was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 380 \mathrm{~nm}, \tau_{\text {minor }}=28.5 \mathrm{~min}, \tau_{\text {major }}=31.0 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3al was assigned in analogy with 3af.

Compound 3am: Purified by silica-gel flash column chromatography (10% EtOAc in
 dichloromethane); Off-white solid ($58.0 \mathrm{mg}, 0.138 \mathrm{mmol}, 69 \%$ yield); m.p. 176$178{ }^{\circ} \mathrm{C}$; FT-IR (Thin film):, 2922 (w), 2226 (m), 1647 (s), 1510 (m), 1249 (w), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.48$ (s, 1H), 8.37 (s, 1H), 7.77 (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.13$ (ddd, $J=17.3,10.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=13.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $13.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$): $\delta 159.0,158.7,157.4,149.0,148.8,140.0$, $138.0,137.1,135.0,133.9,128.1,127.2,126.5,123.9,123.3,118.7,117.3,116.3,115.3,114.3$, 107.9, 55.3, 47.9, 46.1, 37.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 422.1869$, Found: 422.1866; Optical rotation: $[\alpha] \mathrm{D}^{21}-13.9\left(c 2.0, \mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of the product 3am was assigned in analogy with 3af.

Compound 3an: Purified by silica-gel flash column chromatography (13\% EtOAc in petroleum
 ether); Off-white solid ($74.0 \mathrm{mg}, 0.180 \mathrm{mmol}, 90 \%$ yield); m.p. $147-148{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2227 (m), 1648 (s$), 1606$ (m), 1510 (m), 1249 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.13-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=12.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.1,158.9,157.6,154.4,141.9,140.0,136.1,133.7,128.2,127.5,126.7,123.2$, $119.0,117.9,116.2,115.1,114.4,110.5,108.1,106.2,55.3,46.1,44.5,36.3$; HRMS (ESI+): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 433.1528$, Found: 433.1530; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-$ 20.4 (c 2.0, $\left.\mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25 nHexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 237 \mathrm{~nm}, \tau_{\text {minor }}=36.2 \mathrm{~min}, \tau_{\text {major }}=38.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3an was assigned in analogy with 3af.

Compound 3ao: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum ether); Light yellow solid ($67.0 \mathrm{mg}, 0.157 \mathrm{mmol}, 79 \%$ yield); m.p. $172-174{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2928 (w), 2226 (m), 1649 (s$), 1608$ (m), 1555 (m), 1249 (m); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.79$ (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.17-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.51-$ $5.48(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,158.9,157.5$, $145.2,140.1,138.5,133.8,129.9,128.2,127.5,127.2,126.6,124.3,123.3,119.1,117.1,116.3$, $115.2,114.4,108.2,55.4,46.2,46.0$, 39.0; HRMS (ESI+): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 449.1300$, Found: 449.1307; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{23}-15.5$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($60: 40 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 363 \mathrm{~nm}$, $\tau_{\text {minor }}=21.8 \mathrm{~min}, \tau_{\text {major }}=25.3 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ao was assigned in analogy with 3af.

Compound 3ap: Purified by silica-gel flash column chromatography ($12 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($62.0 \mathrm{mg}, 0.166 \mathrm{mmol}, 83 \%$ yield); m.p. $161-162{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2963 (m), 2228 (m), 1642 (s), 1510 (m), 1248 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.79$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.55 (m, 1H), 7.39 (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.74-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=13.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=12.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): ~ \delta 159.1,159.0,158.9,140.0,139.9,133.6,128.2,127.5,126.9,123.1,119.3,116.7$, 116.1, 115.5, 114.3, 107.7, 55.3, 47.7, 46.1, 37.6, 28.1, 11.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 395.1735, Found: 395.1735; Optical rotation: $[\alpha] \mathrm{D}^{21}-1.2$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 229 \mathrm{~nm}, \tau_{\text {minor }}=25.8 \mathrm{~min}, \tau_{\text {major }}=27.3 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ap was assigned in analogy with 3af.

Compound 3aq: Purified by silica-gel flash column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum
 ether); White solid ($44.0 \mathrm{mg}, 0.101 \mathrm{mmol}, 50 \%$ yield); m.p. $149-151^{\circ} \mathrm{C}$; FT-IR (Thin film): 2224 (m), 1648 (s), 1510 (m), 1248 (m), 1032 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.12-$ $3.07(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 159.2,158.9,158.8,140.1,139.6,139.3,133.5,129.5,128.7,128.2$, $127.6,126.7,123.0$, 119.1, 117.0, 116.1, 115.6, 114.4, 108.0, 55.4, 47.9, 46.2, 42.2, 36.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 435.2073$, Found: 435.2072; Optical rotation: $[\alpha] \mathrm{D}^{22}-5.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of the product $\mathbf{3 a q}$ was assigned in analogy with 3af.

Compound 3ar: Purified by silica-gel flash column chromatography ($10 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($42.0 \mathrm{mg}, 0.098 \mathrm{mmol}, 49 \%$ yield); m.p. $196-198{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2926 (s), 2851 (m), 2228 (m), 1648 (s$), 1606$ (s$), 1511$ (m), 1249 (m); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6$ Hz, 2H), 5.79-5.70 (m, 1H), 5.48-5.44 (m, 2H), 4.89 (d, J = 11.6 Hz, 1H), 4.57 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=12.9$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.33-$ $1.26(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.9$,
$159.2,159.0,140.0,138.2,133.5,128.2,127.6,126.9,123.0,119.4,117.3,116.2,115.6,114.4$, 107.9, 55.4, 52.2, 46.1, 42.5, 34.9, 33.0, 31.3, 30.1, 26.6, 26.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 449.2205$, Found: 449.2203; Optical rotation: $[\alpha] \mathrm{D}^{21}-6.2$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with $92.5: 7.5$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (75:25n-Hexane/EtOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 358 \mathrm{~nm}, \tau_{\text {minor }}=8.9 \mathrm{~min}, \tau_{\text {major }}=10.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ar was assigned in analogy with 3af.

Compound 3as: Regioselectivity (r.r.) > 20: 1 was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude
 reaction mixture. Purified by silica-gel flash column chromatography (13% EtOAc in petroleum ether); Off-white solid ($88.0 \mathrm{mg}, 0.197 \mathrm{mmol}, 98 \%$ yield); m.p. $148-150{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3078 (w), 2226 (m), 1649 (s), 1608 (m), 1510 (m), 1249 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.30-6.21(\mathrm{~m}, 2 \mathrm{H}), 6.03-5.95$ $(\mathrm{m}, 1 \mathrm{H}), 5.47-5.44(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.48-3.38 (m, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.1,158.9,158.1,140.1,138.7,136.7$, $133.8,131.4,129.9,128.6,128.1,127.6,127.4,126.8,126.4,123.2,119.1,116.3,116.2,115.5$, 114.4, 107.9, 55.3, 48.6, 46.0, 37.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 469.1892, Found: 469.1895; Optical rotation: $[\alpha] D^{22}-102.1$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($60: 40 n$-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 259 \mathrm{~nm}$, $\tau_{\text {minor }}=18.6 \mathrm{~min}, \tau_{\text {major }}=21.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3as was assigned in analogy with 3af.

Compound 3at: Regioselectivity (r.r.) > 20:1 was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude
 reaction mixture. Purified by silica-gel flash column chromatography ($14 \% \mathrm{EtOAc}$ in petroleum ether); Off-white solid ($70.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$ yield); m.p. 165$167{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2226 (m), 1649 (s), 1607 (m), 1555 (m), 1451 (m), 1249 (m), 1033 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.79$ (d, $\left.J=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.89$ (ddd, $J=17.4,10.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-$ $5.51(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,158.9,158.5,139.9,139.3,133.6,131.3,128.1,127.5,127.1$, $126.8,123.1,119.2,116.2,115.6,115.4,114.3,107.7,55.3,48.4,46.0,37.5,17.9$; HRMS (ESI+): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 407.1735$, Found: 407.1732; Optical rotation:
$[\alpha]_{\mathrm{D}}^{22}-17.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 96:4 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane $\left./ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20{ }^{\circ} \mathrm{C}, 231 \mathrm{~nm}, \tau_{\text {minor }}=14.2 \mathrm{~min}, \tau_{\text {major }}=16.4 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3at was assigned in analogy with 3af.

Compound 3ba: Purified by silica-gel flash column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum
 ether); Light-yellow sticky liquid ($69.0 \mathrm{mg}, 0.159 \mathrm{mmol}, 79 \%$ yield); FT-IR (Thin film): 3016 (m), 2227 (m), 1648 (s$), 1560$ (m), 1511 (s$), 1250$ (s), 1033 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.22$ (ddd, $J=17.5,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-$ $3.76(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{dd}, J=13.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 159.1,158.8,158.0,142.0,139.2,138.0,135.0,132.8,128.9$, $128.1,127.6,127.5,127.3,126.4,119.1,116.3,116.1,115.5,114.4,107.8,55.3,50.8,45.9,38.3$, 20.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 435.2073$, Found: 435.2072; Optical rotation: $[\alpha]_{\mathrm{D}} 22-29.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 97.5:2.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($60: 40 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 229 \mathrm{~nm}, \tau_{\text {minor }}=18.6 \mathrm{~min}, \tau_{\text {major }}=22.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ba was assigned in analogy with 3af.

Compound 3ca: Reaction performed on 0.1 mmol scale of $\mathbf{1 c}$; purified by silica-gel flash
 column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum ether); Off-white solid $\left(35.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 81 \%\right.$ yield); m.p. $127-129{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2224 (m), 1650 (s), 1511 (s), 1248 (m), 1032 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18$ $(\mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.16$ (ddd, $J=17.9,9.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{dd}, J=13.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,159.1,158.1,145.0,142.0,140.2,139.2,129.0,128.2,127.7$, $127.5,127.3,126.6,124.7,117.0,116.4,116.3,115.6,114.4,106.8,55.4,51.0,46.0,38.4,22.5$; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 435.2073$, Found: 435.2073; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-16.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 89.5:10.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 233 \mathrm{~nm}$, $\tau_{\text {minor }}=17.5 \mathrm{~min}, \tau_{\text {major }}=20.2 \mathrm{~min}$). See

Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ca was assigned in analogy with 3af.

Compound 3da: Purified by silica-gel flash column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum
 ether); Yellow solid ($76.0 \mathrm{mg}, 0.169 \mathrm{mmol}, 84 \%$ yield); m.p. $163-165^{\circ} \mathrm{C}$; FTIR (Thin film): 2927 (w), 2226 (m), 1645 (s), 1558 (s), 1508 (s), 1244 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.26-6.18(\mathrm{~m}, 1 \mathrm{H})$, $5.53(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.00 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H})$, 3.53-3.48 (m, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.1,158.5,157.4,155.1,142.0,139.2$, $134.5,129.0,128.1,127.6,127.4,127.3,122.1,119.8,117.5,116.4,115.4,114.4,108.7,108.3$, 55.8, 55.3, 50.7, 46.1, 38.7; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 451.2022$, Found: 451.2023; Optical rotation: $[\alpha] \mathrm{D}^{22}-25.8\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $97: 3$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 240 \mathrm{~nm}, \tau_{\text {minor }}=19.1 \mathrm{~min}$, $\tau_{\text {major }}=22.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3da was assigned in analogy with 3af.

Compound 3ea: Purified by silica-gel flash column chromatography ($12 \% \mathrm{EtOAc}$ in petroleum
 ether); Yellow sticky liquid ($86.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 98 \%$ yield); FT-IR (Thin film): 2927 (w), 2228 (m), 1650 (s), 1561 (m), 1508 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.35$ (dd, $J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-7.28$ (m, 1H), 7.267.22 (m, 3H), 7.19-7.15 (m, 3H), 7.03 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.10$ (ddd, $J=17.2,10.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{dd}, J=13.3,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,158.5,158.0$ $(\mathrm{d}, J=245.3 \mathrm{~Hz}), 157.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 141.6,138.9,136.5,129.0,128.1,127.5,127.2,121.6$ $(\mathrm{d}, J=24.0 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 116.5,115.0,114.5,111.9(\mathrm{~d}, J=$ $23.7 \mathrm{~Hz}), 109.2,55.4,50.6,46.3,38.5$; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 461.1641, Found: 461.1641; Optical rotation: $[\alpha] \mathrm{D}^{22}-39.9$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 96.5:3.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $237 \mathrm{~nm}, \tau_{\text {minor }}=13.9 \mathrm{~min}, \tau_{\text {major }}=16.0 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ea was assigned in analogy with 3af.

Compound 3fa: Purified by silica-gel flash column chromatography (12\% EtOAc in petroleum
 ether); Yellow sticky liquid ($90.0 \mathrm{mg}, 0.196 \mathrm{mmol}, 99 \%$ yield); FT-IR (Thin film): 2838 (w), 2228 (w), 1651 (s), 1513 (m), 1248 (m), 1178 (m); ${ }^{1} \mathbf{H}-\mathbf{N M R}$ ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.68$ (s, 1H), 7.49 (d, $\left.J=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H})$, 7.26-7.23 (m, 3H), $7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-6.15$ $(\mathrm{m}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50-$ $3.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,158.4,157.3,141.5,138.9,138.4,133.5$, $129.0,128.9,128.1,127.5,127.0,126.0,120.2,117.7,116.6,114.9,114.5,109.0,55.4,50.7$, 46.2, 38.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 477.1346$, Found: 477.1349; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-30.3\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 235 \mathrm{~nm}, \tau_{\text {minor }}=15.2 \mathrm{~min}, \tau_{\text {major }}=17.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3fa was assigned in analogy with 3af.

Compound 3ga: Purified by silica-gel flash column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum
 ether); Yellow sticky liquid ($96.0 \mathrm{mg}, 0.192 \mathrm{mmol}, 96 \%$ yield); FT-IR (Thin film): 3016 (w), 2227 (m), 1651 (s$), 1515$ (m), 1249 (m), 1179 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz, CDCl $_{3}$): $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.23-6.14(\mathrm{~m}$, $1 \mathrm{H}), 5.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{dd}, J=13.0,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46$ (dd, $J=13.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.2,158.4,157.3$, $141.5,138.9,138.8,136.3,129.1,129.0,128.1,127.5,127.0,120.6,117.9,116.6,116.2,114.9$, $114.5,109.0,55.4,50.7,46.1,38.3$; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 521.0841, Found: 521.0843; Optical rotation: $[\alpha]_{\mathrm{D}}^{22}-21.6$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 251 \mathrm{~nm}$, $\tau_{\text {minor }}=16.4 \mathrm{~min}$, $\tau_{\text {major }}=19.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ga was assigned in analogy with 3af.

Compound 3ha: Purified by silica-gel flash column chromatography (10\% EtOAc in petroleum
 ether); Light yellow sticky liquid ($89.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$ yield); FT-IR (Thin film):, 2920 (m), 2229 (m), 1658 (s), 1554 (w), 1513 (m), 1132 (m), ${ }^{\mathbf{1}} \mathbf{H}-$ NMR (400 MHz, CDCl 3): $\delta 7.93$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.88 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.20$ (ddd, $J=17.6,10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=13.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=13.1$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 159.4,158.5,157.5,141.5,139.8,138.9,134.5$ (q, $J=33.4 \mathrm{~Hz}), 129.0,128.4,127.8,127.5,127.4,126.8,123.1(\mathrm{q}, J=273.3 \mathrm{~Hz}), 121.2,119.3(\mathrm{q}, J$ $=3.4 \mathrm{~Hz}), 116.6,114.6,113.4(\mathrm{q}, J=4.2 \mathrm{~Hz}), 110.2,55.3,50.8,46.3,38.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 511.1609$, Found: 511.1607; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-$ 23.9 (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 88:12 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 nHexane $\left./ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 234 \mathrm{~nm}, \tau_{\text {minor }}=8.8 \mathrm{~min}, \tau_{\text {major }}=9.8 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ha was assigned in analogy with 3af.

Compound 3ia: Purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$);
 Light-yellow solid ($62.0 \mathrm{mg}, 0.172 \mathrm{mmol}, 86 \%$ yield); m.p. 227-229 ${ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2920 (m), 2852 (w), 2229 (m), 1661 (s), 1610 (s$), 1339$ (s), 1084 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.24-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H})$, 3.62 (dd, $J=13.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=13.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 158.3,158.1,144.1,142.6,141.3,138.6,129.2,127.7,127.6,127.5,123.1$, 118.6, 116.9, 116.1, 114.3, 109.9, 51.1, 38.7, 30.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{H}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 360.1348$, Found: 360.1346; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+16.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 275 \mathrm{~nm}$, $\tau_{\text {minor }}=15.4 \mathrm{~min}$, $\tau_{\text {major }}=16.8 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ia was assigned in analogy with 3af.

Compound 3ja: Purified by silica-gel flash column chromatography ($1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$);
 Off-white solid ($58.0 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%$ yield); m.p. $150-152{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2925 (m), 2226 (m), 1649 (s), 1607 (m), 1557 (m), 1088 (w); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR (400 MHz, CDCl $)^{2}: \delta 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.18-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H})$, 3.60-3.55 (m, 1H), 3.53-3.48 (m, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 158.7$, $157.8,142.1,140.7,139.1,133.8,129.0,127.5,127.3,126.8,123.1,118.9,116.5,115.4,115.3$, 108.1, 51.0, 38.4, 30.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 315.1497$, Found: 315.1495; Optical rotation: $[\alpha]_{D^{23}}+8.7\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($75: 25 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 231 \mathrm{~nm}, \tau_{\text {minor }}=16.9 \mathrm{~min}, \tau_{\text {major }}=20.4$ min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product $\mathbf{3 j a}$ was assigned in analogy with 3af.

Compound 3ka: Purified by silica-gel flash column chromatography (14\% EtOAc in petroleum
 ether); Off-white solid ($65.0 \mathrm{mg}, 0.198 \mathrm{mmol}, 99 \%$ yield); m.p. $115-117{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2978 (w), 2226 (m), 1647 (s), 1608 (m), 1555 (m), 1093 (w); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H})$, 3.65-3.59 (m, 1H), 3.57-3.52 (m, 1H), 1.41 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C-NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 158.2,157.6,142.1,139.6,139.1,133.7,128.9,127.4,127.3,126.9,122.9$, 119.1, 116.5, 115.3, 115.2, 108.0, 50.9, 38.4, 38.2, 12.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OH}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 329.1654$, Found: 329.1655; Optical rotation: $\left[\alpha \mathrm{D}^{21}+10.0\left(c 2.0, \mathrm{CHCl}_{3}\right)\right.$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 234 \mathrm{~nm}$, $\left.\tau_{\text {minor }}=8.8 \mathrm{~min}, \tau_{\text {major }}=10.5 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product $\mathbf{3 k a}$ was assigned in analogy with 3af.

Compound 31a: Purified by silica-gel flash column chromatography (13\% EtOAc in petroleum
 ether); Off-white solid ($72.0 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%$ yield); m.p. $176-178{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 3029 (w), 2226 (m), 1650 (s), 1605 (m), 1451 (m), 1028 (w); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.20$ (ddd, $J=17.3,10.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=15.3,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=12.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$,
$\left.\mathbf{C D C l}_{3}\right): \delta 158.9,158.3,141.9,140.0,139.1,135.5,133.8,129.0,128.9,127.7,127.5,127.4$, 126.8, 126.7, 123.2, 119.1, 116.4, 116.3, 115.3, 108.0, 50.9, 46.5, 38.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 391.1810$, Found: 391.1813; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-34.1$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 303 \mathrm{~nm}, \tau_{\text {minor }}=12.4 \mathrm{~min}, \tau_{\text {major }}=15.8 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3la was assigned in analogy with 3af.

Compound 3ma: Purified by silica-gel flash column chromatography ($13 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($67.0 \mathrm{mg}, 0.197 \mathrm{mmol}, 98 \%$ yield); m.p. $125-127{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 3024 (w), 2226 (m), 1650 (s), 1605 (m), 1556 (m), 1190 (m); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.20-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.96-$ $5.89(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.91(\mathrm{~m}, 3 \mathrm{H})$, 3.78-3.72 (m, 1H), 3.62-3.57 (m, 1H), $3.52(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 158.3,158.1,142.0,139.9,139.1,133.6,130.9,128.9$, 127.5, 127.3, 126.8, 123.1, 119.0, 117.8, 116.4, 116.1, 115.2, 107.9, 50.9, 45.2, 38.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 363.1473$, Found: 363.1476; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+4.2\left(c \quad 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20{ }^{\circ} \mathrm{C}, 240 \mathrm{~nm}, \tau_{\text {minor }}=13.8 \mathrm{~min}, \tau_{\text {major }}=16.7 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ma was assigned in analogy with 3af.

Compound 3oa: Purified by silica-gel flash column chromatography ($12 \% \mathrm{EtOAc}$ in petroleum
 ether); Off-white solid ($48.0 \mathrm{mg}, 0.152 \mathrm{mmol}, 76 \%$ yield); m.p. $141-143{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2227 (w), 1655 (s), 1591 (m), 1451 (m), 1072 (w); ${ }^{1} \mathbf{H}-N M R(400$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.73(\mathrm{dd}, J=4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.16(\mathrm{ddd}, J=17.1,10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=13.1$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dd, $J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $159.4,156.8,152.9,150.0,141.6,138.9,135.0,129.0,127.4,118.8,116.7,114.8,114.2,108.9$, 50.8, 37.7, 29.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 316.1450$, Found: 316.1453; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-21.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $98: 2$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 355 \mathrm{~nm}, \tau_{\text {minor }}=17.3 \mathrm{~min}, \tau_{\text {major }}=24.2 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3oa was assigned in analogy with 3af.

Compound 3pa: Purified by silica-gel flash column chromatography (15\% EtOAc in petroleum
 ether); Yellow solid ($58.0 \mathrm{mg}, 0.176 \mathrm{mmol}, 88 \%$ yield); m.p. $170-172{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2924 (w), 2222 (w), 1593 (m), 1545 (s), 1451 (m), 1104 (m); ${ }^{\mathbf{1}} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.16(\mathrm{ddd}, J=17.4,9.9,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 3 \mathrm{H}), 3.79-$ $3.73(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=13.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=13.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 180.6,151.0,142.1,141.2,138.9,134.2,129.0,127.4,127.3$, 126.9, 124.8, 122.2, 119.2, 116.7, 116.6, 116.3, 51.1, 38.8, 38.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{SH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 331.1269$, Found: 331.1266; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+22.6$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 97:3 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 292 \mathrm{~nm}, \tau_{\text {minor }}=18.3 \mathrm{~min}, \tau_{\text {major }}=19.6 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3pa was assigned in analogy with 3af.

Compound 3qa: Reaction performed on 0.40 mmol scale of $\mathbf{1 q}$; purified by silica-gel flash
 column chromatography (20% EtOAc in petroleum ether); Yellow thick oil (44.0 mg , 0.119 mmol, 30% yield); FT-IR (Thin film): 2921 (w), 2221 (w), 1652 (s), 1516 (m), 1249 (s), 1032 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta 7.29-7.26$ (m, 3H), 7.22$7.17(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{ddd}, J=17.4,10.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.63$ (m, 1H), $3.12(\mathrm{dd}, J=13.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 161.3,160.2,159.9,141.8,139.9,139.6,130.2,128.9,127.6,127.2$, 127.0, 116.1, 115.1, 114.6, 107.9, 105.3, 55.5, 52.1, 49.7, 41.1; HRMS (ESI+): Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 393.1579$, Found: 393.1576; Optical rotation: $[\alpha] \mathrm{D}^{22}-18.1$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 339 \mathrm{~nm}, \tau_{\text {minor }}=16.9 \mathrm{~min}, \tau_{\text {major }}=18.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3qa was assigned in analogy with 3af.

H. Attempted vinylogous allylic alkylation of 3-cyano-4-ethyl-2-quinolone 1 r :

The same procedure as above was followed. Product was obtained as $1: 1.1$ mixture of branched/linear and 1.1:1 dr for the branched product (as determined from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude). Purified by silica-gel flash column chromatography (13\% EtOAc in petroleum ether). After purification $\mathrm{b} / \mathrm{l}=1: 1$ and $\mathrm{dr}=1: 1$ for the branched product; Off-white solid (76.0 mg , 0.174 mmol, 87% yield); FT-IR (Thin film): 2926 (m), 2224 (w), 1646 (s), 1550 (m), 1512 (m), 1248 (m), 1030 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): Signals corresponding to the linear allyl product and both diastereomers of the branched allyl product: $\delta 8.27-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 12 \mathrm{H}), 7.37-7.16(\mathrm{~m}$, $15 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 5 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.20-6.09(\mathrm{~m}$, $2 \mathrm{H}), 6.03-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (br s, 2H), 5.49 (br s, 4H), 5.35 (d, J = 13.2 Hz , $2 \mathrm{H}), 5.28-5.23(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.98(\mathrm{~m}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 12 \mathrm{H}), 1.73-1.71$ $(\mathrm{m}, \mathbf{6 H}), 1.40-1.39(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: Signals corresponding to the linear allyl product and both diastereomers of the branched allyl product: $\delta 164.3,164.2,163.1,162.7$, 159.7, 159.4, 159.1, 158.9, 142.1, 141.7, 141.2, 140.2, 140.0, 139.7, 139.6, 138.9, 138.7, 133.9, $133.6,133.4,133.2,129.2,129.0,128.5,128.4,128.2,128.2,128.1,128.0,127.8,127.7,127.4$, $127.3,127.2,127.1,126.8,126.5,126.2,125.6,123.3,122.9,122.5,122.3,119.9,119.5,118.5$, $117.5,117.4,116.6,116.5,116.4,116.2,116.1,115.6,115.4,114.4,114.2,108.4,108.3,105.2$, 56.5, 56.4, 55.3, 53.4, 46.9, 46.3, 46.2, 45.8, 45.6, 39.1, 38.3, 18.5, 18.2, 17.4, 16.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 435.2073$, Found: 435.2074.

I. Unsuccessful substrates for enantioselective vinylogous allylic alkylation reaction:

J. Large scale synthesis of 3aa:

In an oven dried 25 mL 2-necked round-bottom flask, equipped with a reflux condenser, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(40.0 \mathrm{mg}, 0.060 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$ and ligand $\left(S_{a}, S, S\right)-\mathrm{L}(65.0 \mathrm{mg}, 0.120 \mathrm{mmol}, 3$ $\mathrm{mol} \%$) were taken with 10.0 mL of absolute THF under a positive argon pressure followed by addition of 6.0 mL dry $n-\mathrm{PrNH}_{2}$. The solution was heated at $50^{\circ} \mathrm{C}$ for 30 min , after which all volatiles were removed under vacuum to obtain a yellow solid. To this, 2-quinolone $\mathbf{1 a}$ (1.22 g , $4.00 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{DABCO}(449 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.0$ equiv.) were introduced under a positive argon pressure followed by 12.0 mL of absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the suspension was stirred at $50{ }^{\circ} \mathrm{C}$ for 5 min . After 5 min , a solution of allyl carbonate $\mathbf{2 a}(1.125 \mathrm{~g}, 4.80 \mathrm{mmol}, 1.2$ equiv.) in 8.0 mL absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The resulting mixture was purged with argon and the reaction was refluxed at $50{ }^{\circ} \mathrm{C}$ until TLC $(20 \% \mathrm{EtOAc}$ in petroleum ether) revealed complete consumption of $\mathbf{1 a}$. After 18 h , the reaction mixture was allowed to attain ambient temperature, diluted with 10.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10.0 mL 1 N HCl solution. Organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. Combined organic layer was washed with brine (20.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a reddish-brown oil. This oil was purified by silica-gel flash column chromatography
(12-13\% EtOAc in petroleum ether) to obtain 3aa as off-white solid ($1.43 \mathrm{~g}, 3.400 \mathrm{mmol}, 85 \%$ yield) with 97:3 er. Isolated 3aa was further recrystallized form EtOH to obtain 1.06 g of $\mathbf{3 a a}$ with 98:2 er.

K. Procedure for the preparation of alcohol 4:

In a 5 mL round-bottom flask, 3aa $\left(42.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv.) and NaIO_{4} (107.0 $\mathrm{mg}, 0.500 \mathrm{mmol}, 5.0$ equiv.) was taken in 5.0 mL of 1,4 -dioxane $/ \mathrm{H}_{2} \mathrm{O}$ (3:1) mixture. To this solution, was added $\mathrm{OsO}_{4}(5.1 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.2$ equiv.) and stirred at r.t. for 3 h . The reaction mixture was diluted with 2.0 mL of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic layer was washed with sat. NaHCO_{3} solution (5.0 mL) and brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was taken in (2:1) $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ mixture, cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution, was added NaBH_{4} ($15.0 \mathrm{mg}, 0.400$ mmol, 4.0 equiv.) and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ under argon. After 24 h , the reaction mixture was diluted with 2.0 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($35 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 4 as an off-white solid ($20.0 \mathrm{mg}, 0.047 \mathrm{mmol}, 47 \%$ yield); m.p. $140-142{ }^{\circ} \mathrm{C}$; FTIR (Thin film): 2934 (w), 2229 (w), 1643 (s), 1510 (m), 1452 (m), 1249 (s); ${ }^{\mathbf{1} H-N M R ~(400 ~}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H})$, 4.02-3.94 (m, 2H), 3.79-3.74 (m, 1H), 3.76 ($\mathrm{s}, 3 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ 1.87 (m, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,158.9,158.8,140.1,139.9,133.8,129.1$, 128.2, 128.1, 127.9, 127.5, 127.2, 123.2, 119.2, 116.2, 115.3, 114.5, 107.8, 66.2, 55.4, 49.2, 46.1, 35.5; HRMS (ESI+): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 425.1865$, Found: 425.1867; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-73.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $98: 2$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IE column (60:40 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20{ }^{\circ} \mathrm{C}, 237 \mathrm{~nm}, \tau_{\text {major }}=16.3 \mathrm{~min}, \tau_{\text {minor }}=19.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

L. Procedure for the cross-metathesis reaction of 3aa:

In an oven dried 10 mL 2 -necked round-bottom flask, equipped with a reflux condenser, 3aa ($42.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) and Grubbs-II ($4.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv.) were taken in 2.0 mL of absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon and the resulting solution was heated to $50{ }^{\circ} \mathrm{C}$. To this, was added methyl acrylate ($53 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 5.0$ equiv.) at once and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 36 h . Solvent was evaporated to obtain a yellow residue, which was purified by silica-gel flash column chromatography (17% EtOAc in petroleum ether) to obtain 5 as a thick red oil ($34.0 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%$ yield); FT-IR (Thin film): 2920 (w), 2226 (m), 1720 (m), 1649 (s), 1450 (m), 1033 (w); $\left.{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~}\right)_{3}$): $\delta 7.76$ (d, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.69$ $(\mathrm{m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=13.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 166.3,159.2,158.7$, $157.2,148.2,140.1,139.6,133.9,129.2,128.1,128.0,127.8,127.4,126.6,123.3,122.3,118.9$, 116.4, 115.0, 114.6, 108.1, 55.4, 51.8, 49.0, 46.1, 37.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 501.1790$, Found: 501.1792; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-27.2$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 230 \mathrm{~nm}, \tau_{\text {minor }}=20.2 \mathrm{~min}, \tau_{\text {major }}=53.6 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

M. Procedure for the Ir-catalyzed hydroboration of 3aa:

In an oven dried 10 mL round-bottom flask, 3aa ($42.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was taken along with $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} \quad(2.0 \quad \mathrm{mg}, \quad 0.003 \mathrm{mmol}, 0.03$ equiv.) and
bis(diphenylphosphino)methane (DPPM; $2.3 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.06$ equiv.) under a positive argon pressure. Then $1.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added followed by the addition of HBpin ($30 \mu \mathrm{~L}$, $0.200 \mathrm{mmol}, 2.0$ equiv.) and the resulting solution was stirred at r.t. for 11 h under argon atmosphere. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica-gel flash column chromatography ($16 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 6 as a thick colorless oil ($44.0 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$ yield); FT-IR (Thin film): 2926 (w), 2226
 $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.02(\mathrm{~m}$, $4 \mathrm{H}), 6.75(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.28(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.09-1.08(\mathrm{~m}, 12 \mathrm{H}), 0.66-0.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 159.1,158.9,142.4,140.0,133.5,128.7,128.3,128.2,127.9,127.6,127.1,127.1$, 122.9, 119.3, 116.1, 115.3, 114.4, 107.8, 83.1, 55.4, 49.1, 46.0, 39.8, 30.0, 24.9, 24.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{BH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 548.2961$, Found: 548.2963; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-54.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IB column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 236 \mathrm{~nm}, \tau_{\text {minor }}=34.8 \mathrm{~min}, \tau_{\text {major }}=37.2 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

N. Procedure for the epoxidation of 3aa:

In an oven and vacuum-dried 5 mL round-bottom flask, 3aa ($46.0 \mathrm{mg}, 0.109 \mathrm{mmol}, 1.0$ equiv.) was taken in 0.6 mL of abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled it to $0{ }^{\circ} \mathrm{C}$. To this solution, was added m-CPBA ($79.0 \mathrm{mg}, 55 \%$ assay, $0.251 \mathrm{mmol}, 2.3$ equiv.) and the resulting suspension was stirred at r.t. under argon. After 48 h , the reaction mixture was diluted with 2.0 mL of sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic layer was washed with sat. NaHCO_{3} solution (5.0 mL) and brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue (with $1.3: 1 \mathrm{dr}$, as determined from ${ }^{1} \mathrm{H}-\mathrm{NMR}$) was purified by silica-gel flash column chromatography ($2-3 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain 7 as white solid (28.0 mg , $0.064 \mathrm{mmol}, 59 \%$ yield); m.p. 154-156 ${ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3014 (w), 2926 (w), 2838 (w), 2227 (m), 1649 (s), 1510 (m), 1557 (m), 1452 (m), 1250 (m), 1031 (m); ${ }^{1} \mathbf{H}-\mathrm{NMR}$ (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \underline{\text { Signals corresponding to the major diastereomer: }} \delta 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54$
$(\mathrm{m}, 1 \mathrm{H}), 7.41-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.46(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J$ $=13.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.73$ $(\mathrm{m}, 2 \mathrm{H})$; Representative signals corresponding to the minor diastereomer: $\delta 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.46(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.84(\mathrm{~m}, 1 \mathrm{H})$, 2.53-2.51 (m, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,159.1,158.8,158.7,158.0,157.7$, $140.1,140.0,139.1,138.7,133.9,133.7,129.1,129.0,128.3,128.2,128.2,128.1,128.0,127.9$, $127.5,127.4,126.9,126.7,123.3,123.2,119.1,118.9,116.3,115.3,115.0,114.5,114.4,108.0$, 107.9, 55.6, 55.4, 54.5, 50.7, 48.2, 47.0, 46.4, 46.2, 46.1, 36.9, 34.8, 29.8; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 459.1685 , Found: 459.1685; The enantiomeric ratio of compound $7(\mathrm{dr}=1.3: 1)$ is $98: 2$ er. for the major diasteromer and $99: 1 \mathrm{er}$. for the minor diastereomer. The enantiomeric ratios were determined by HPLC analysis using Daicel Chiralpak IA column (60:40 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 227 \mathrm{~nm}$, for major diasteromer $\tau_{\text {minor }}=11.1 \mathrm{~min}, \tau_{\text {major }}=12.1 \mathrm{~min}$, and for minor diasteromer $\tau_{\text {minor }}=15.2 \mathrm{~min}, \tau_{\text {major }}=18.4$ min). See Supporting Information: Part B for HPLC chromatograms.

O. Procedure for the selective reduction of the allylic double bond of 3ja \& 3aa:

In an oven and vacuum-dried 10 mL two-necked round-bottom flask, a solution of $\mathbf{3 j a}$ ($80.0 \mathrm{mg}, 0.254 \mathrm{mmol}, 1.0$ equiv.) in EtOH (2.5 mL), $10 \% \mathrm{Pd} / \mathrm{C}(13.0 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.05$ equiv.) was added. The resulting mixture was degassed and stirred under H_{2} balloon pressure for 24 h at r.t. The reaction mixture was filtered over Celite ${ }^{\circledR}$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under reduced pressure and the residue was purified by silica-gel flash column chromatography ($14 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 8 as a white solid ($73.0 \mathrm{mg}, 0.231$ mmol, 91% yield); m.p. $160-162^{\circ} \mathrm{C}$; FT-IR (Thin film): 2925 (w), 2225 (w), 1647 (s), 1455 (m), 1091 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=13.3,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 158.7,158.6,142.7,140.5,133.7,128.7,127.6$, 127.0, 126.9, 123.0, 118.9, 115.3, 115.2, 107.5, 48.8, 39.7, 30.1, 28.3, 12.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 317.1654, Found: 317.1651; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-46.3$ (c $2.0, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was
determined by HPLC analysis using Daicel Chiralpak IG column (60:40 n-Hexane/EtOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 234 \mathrm{~nm}, \tau_{\text {minor }}=9.8 \mathrm{~min}, \tau_{\text {major }}=10.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Compound 9: Reaction was performed on a 0.100 mmol scale of 3aa; purified by silica-gel
 flash column chromatography (13-14\% EtOAc in petroleum ether); White solid $\left(41.0 \mathrm{mg}, 0.097 \mathrm{mmol}, 97 \%\right.$ yield); m.p. $179-181{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2928 (w), 2226 (w), 1647 (s), 1511 (m), 1452 (m), 1249 (m), 1032 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 4 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.52$ (dd, $J=13.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 2 \mathrm{H})$, 0.81 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.2,159.1,158.9,142.7,140.0$, 133.6, 128.7, 128.2, 127.7, 127.5, 127.1, 127.0, 123.0, 119.2, 116.1, 115.4, 114.4, 107.7, 55.4, 48.9, 46.0, 39.8, 28.4, 12.3; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 423.2073$, Found: 423.2070; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-80.4\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($60: 40 \mathrm{n}$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 238 \mathrm{~nm}, \tau_{\text {minor }}=15.8 \mathrm{~min}$, $\left.\tau_{\text {major }}=18.2 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

P. Procedure for the Wacker oxidation of 3aa:

In an oven dried 10 mL round-bottom flask, $\mathbf{3 a a}(42.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.5 mL of (9:1) DMF/ $\mathrm{H}_{2} \mathrm{O}$ mixture. Then $\mathrm{PdCl}_{2}(3.5 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.20$ equiv.) and $\mathrm{CuCl}(20.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv.) was added to the solution. The round-bottom flask was quickly evacuated and backfilled three times with a balloon of O_{2}, and then stirred at $25^{\circ} \mathrm{C}$ under a balloon of O_{2} for 48 h . Reaction mixture was diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times$ 5.0 mL). Combined organic layer was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($30 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 10 as white solid ($30.0 \mathrm{mg}, 0.069$ mmol, 69% yield); m.p. $204-206{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2923 (m), 2227 (m), 1647 (s), 1511 (m), 1452 (m), 1249 (m), 1030 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~} 3$): $\delta 9.77$ (s, 1H), 8.10 (d, $J=$
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.83-$ $6.82(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.35(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.33$ $(\mathrm{m}, 1 \mathrm{H}), 3.10-3.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 200.6,159.2,158.7,157.9,140.9$, $140.0,133.9,129.0,128.1,127.8,127.5,127.4,127.3,123.5,119.1,116.2,115.2,114.4,107.9$, 55.4, 49.6, 46.0, 40.3, 39.2; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 437.1865$, Found: 437.1864; Optical rotation: [$\alpha]_{\mathrm{D}}{ }^{22}-95.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99:1 er. To determine the enantiomeric ratio, compound $\mathbf{1 0}$ was converted to alcohol $\mathbf{1 0}^{\prime}$ by NaBH_{4} reduction. The enantiomeric ratio of compound $\mathbf{1 0}^{\prime}$ was determined by HPLC analysis using Daicel Chiralpak IG column ($60: 40 n$-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 229 \mathrm{~nm}$, $\tau_{\text {minor }}=19.5 \mathrm{~min}, \tau_{\text {major }}=36.6 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Q. Procedure for the deprotection of 4-methoxybenzyl group of 3aa:

In an oven dried 10 mL round-bottom flask, $\mathbf{3 a a}(84.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.0 mL of $(9: 1) \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ mixture. To this solution, ceric ammonium nitrate (CAN) ($658.0 \mathrm{mg}, 1.200 \mathrm{mmol}, 6.0$ equiv.) was added and the resulting solution stirred at $25^{\circ} \mathrm{C}$ for 24 h. Reaction mixture was diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain 3na as a white solid ($47.0 \mathrm{mg}, 0.156 \mathrm{mmol}, 78 \%$ yield) with $97: 3 \mathrm{er}$. A single recrystallization from EtOH afforded 3na with 99.5:0.5 er; m.p. $195-197{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2928 (w), 2227 (m), 1663 (s), 1601 (m), 1431 (m), 1036 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz , CDCl $\left._{3}\right): \delta 12.76(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35-7.31 (m, 3H), 7.27-7.25 (m, 3H), 6.21-6.12 (m, 1H), 5.07 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=12.6,6.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 160.9,160.6,141.9,139.1,139.0,133.9,129.1,127.5,127.4$, 125.7, 123.9, 118.3, 117.9, 116.6, 115.2, 107.3, 51.0, 38.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 301.1341$, Found: 301.1339; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+20.2$ (c 0.25 , CHCl_{3}) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (75:25 n-Hexane/EtOH, 1.0
$\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 231 \mathrm{~nm}, \tau_{\text {minor }}=9.3 \mathrm{~min}, \tau_{\text {major }}=10.3 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

R. Procedure for the preparation of 2-chloroquinoline derivative 11:

In an oven dried 10 mL round-bottom flask, equipped with a reflux condenser, 3aa (30.0 $\mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv.) was taken in 0.8 mL of POCl_{3} under argon. The resulting solution was refluxed at $110^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was evaporated to obtain a yellow residue which then diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. The combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($3 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 11 as a sticky white liquid ($31.0 \mathrm{mg}, 0.097 \mathrm{mmol}, 97 \%$ yield); FT-IR (Thin film): 2924 (w), 2229 (m), 1564 (s$), 1497$ (m), 1315 (m), 1169 (m); ${ }^{\mathbf{1} H} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$): $\delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.16$ (ddd, $J=17.1,10.1,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 156.8,148.7,148.0,141.8,138.9,133.3,129.9,129.0,128.4,127.5,127.4$, $124.9,124.7,116.6,115.1,108.8,51.5,38.4$; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{H}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 319.1002$, Found: 319.1003; Optical rotation: $[\alpha] \mathrm{D}^{21}-6.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($99: 1 \mathrm{n}$-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $245 \mathrm{~nm}, \tau_{\text {minor }}=12.7 \mathrm{~min}, \tau_{\text {major }}=13.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

S. Procedure for the preparation of quinoline derivative 12:

In an oven dried 10 mL round-bottom flask, $11(25.0 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.0$ equiv.) was taken along with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.0 \mathrm{mg}, 0.00784 \mathrm{mmol}, 0.1)$ in 0.3 mL of dry DMF under argon. To this, $\mathrm{HCO}_{2} \mathrm{H}\left(17 \mu \mathrm{~L}, 0.431 \mathrm{mmol}, 5.5\right.$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(175 \mu \mathrm{~L}, 1.254 \mathrm{mmol}, 16.0$ equiv.) were added and the resulting solution was refluxed at $110{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with EtOAc $(2 \times 5.0 \mathrm{~mL})$. Combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography (4-5\% EtOAc in petroleum ether) to obtain 12 as a sticky white liquid ($14.0 \mathrm{mg}, 0.048 \mathrm{mmol}, 62 \%$ yield); FT-IR (Thin film): 2924 (s), 2225 (m), 1572 (s), 1499 (s), 1455 (s), 1380 (m), 1029 (w$)$; ${ }^{\mathbf{1} H-N M R ~(400 ~ M H z, ~}$ CDCl $\left._{3}\right): \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H})$, 7.65-7.61 (m, 1H), 7.26-7.18 (m, 3H), 7.09-7.07 (m, 2H), 3.66 (dd, $J=13.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=13.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 153.7,150.0,148.7,142.7,132.1,130.7,128.7$, 128.1, 127.7, 127.0, 126.1, 124.7, 117.3, 107.6, 49.5, 39.3, 28.4, 12.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 287.1548$, Found: 287.1544; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-29.2$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (99:1 n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 233 \mathrm{~nm}, \tau_{\text {minor }}=21.1 \mathrm{~min}, \tau_{\text {major }}=25.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

T. Procedure for the preparation of thiolactam 13:

In an oven dried 10 mL round-bottom flask, equipped with a reflux condenser, 3na (29.0 $\mathrm{mg}, 0.098 \mathrm{mmol}, 1.0$ equiv.) was taken along with $\mathrm{P}_{2} \mathrm{~S}_{5}(65.0 \mathrm{mg}, 0.294 \mathrm{mmol}, 3.0$ equiv.) in 2.0
mL of pyridine under argon. The resulting solution was refluxed at $130^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled to r.t., quenched with 2.0 mL of conc. HCl and diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of EtOAc. The organic phase was separated and the aqueous phase was extracted with EtOAc $(2 \times 5.0 \mathrm{~mL})$. The combined organic phase was washed with brine $(5.0 \mathrm{~mL})$, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silicagel flash column chromatography (15% EtOAc in petroleum ether) to obtain $\mathbf{1 3}$ as a yellow sticky solid ($22.0 \mathrm{mg}, 0.070 \mathrm{mmol}, 71 \%$ yield); FT-IR (Thin film): 2922 (m), 2225 (m), 1612 (s), 1568 (s), 1214 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (4 0 0 ~ M H z , ~ C D C l ~} \mathbf{H}_{3}$): $\delta 12.91(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.69 (m, 1H), $7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}$, $3 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{dd}, J=12.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $177.9,155.7,141.8,139.2,138.8,134.5,129.1,127.5,125.9,125.8,121.4,117.2,117.1,116.8$, 115.7, 51.2, 38.6; HRMS (ESI+): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{SH}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 317.1112, Found: 317.1114; Optical rotation: $[\alpha] \mathrm{D}^{22}-17.3\left(c 0.2, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 (75:25 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 303 \mathrm{~nm}, \tau_{\text {minor }}=18.8 \mathrm{~min}, \tau_{\text {major }}=23.1$ $\mathrm{min})$. See Supporting Information: Part B for HPLC chromatograms.

U. Procedure for the preparation of quinolone derivative 14:

In an oven dried 10 mL 2-necked round-bottom flask, equipped with a reflux condenser, 13 ($21.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.0$ equiv.) was taken along with anh. $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($38.0 \mathrm{mg}, 0.273 \mathrm{mmol}$, 4.2 equiv.) in 0.8 mL of dry MeOH under argon. To this solution, was added a solution of methyl iodide ($17 \mu \mathrm{~L}, 0.273 \mathrm{mmol}, 4.2$ equiv.) in 0.2 mL of dry MeOH and the resulting solution was refluxed at $85^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to r.t. and concentrated under reduced pressure. The residue was dissolved in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 5.0 mL of $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. The combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($10 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 14 as a yellow solid ($20 \mathrm{mg}, 0.061$ mmol, 93% yield); m.p. $102-104{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 2925 (m), 2221 (m), 1553 (s), 1301 (m), 1082 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$,
7.80-7.76 (m, 1H), 7.55-7.51 (m, 1H), 7.35-7.32 (m, 2H), 7.28-7.24 (m, 3H), 6.21-6.13 (m, 1H), $5.03(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.74$ (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.3,153.2,148.5,142.3,139.2,132.3,129.3,128.9$, 127.5, 127.2, 126.4, 124.6, 123.5, 116.4, 115.8, 106.9, 51.3, 37.9, 13.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{SH}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 331.1269, Found: 331.1265; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+2.4$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (95:5n-Hexane/EtOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 267 \mathrm{~nm}, \tau_{\text {minor }}=6.5 \mathrm{~min}, \tau_{\text {major }}=6.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

V. Procedure for the deprotection of 4-methoxybenzyl group of 3qa:

In an oven dried 10 mL round-bottom flask, $\mathbf{3 q a}(60.0 \mathrm{mg}, 0.162 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.0 mL of ($9: 1$) $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ mixture. To this, ceric ammonium nitrate (CAN) (534.0 $\mathrm{mg}, 0.972 \mathrm{mmol}, 6.0$ equiv.) was added and the resulting solution stirred at $25^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. The combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($32 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 15 as a yellow liquid ($18 \mathrm{mg}, 0.072 \mathrm{mmol}, 44 \%$ yield); FT-IR (Thin film): 2922 (w), 2223 (m), 1648 (s$), 1232$ (m), 1163 (w); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 13.15$ $(\mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.04 (ddd, $J=17.4,10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 163.6,163.3,141.6,139.4,138.3,128.9,127.6,127.3,116.2,114.9,109.3,104.7,49.9,41.5$; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OH}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 251.1184, Found: 251.1183; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}+18.9\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

W. Procedure for the preparation of γ-allyl-2-chloropyridine 16:

In an oven dried 10 mL round-bottom flask, equipped with a reflux condenser, 15 (16.0 $\mathrm{mg}, 0.062 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.0 mL of POCl_{3} under argon. The resulting solution was refluxed at $110{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was concentrated under reduced pressure to obtain a yellow residue which diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography (10% EtOAc in petroleum ether) to obtain 16 as a white sticky liquid ($12.0 \mathrm{mg}, 0.045 \mathrm{mmol}, 72 \%$ yield); FT-IR (Thin film): 2924 (m), 2230 (m), 1580 (s), 1544 (s$), 1378$ (s), 922 (m); ${ }^{\mathbf{1} H} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 156.8,153.4,151.5,141.4,139.2,129.0,127.6,127.3,123.6,116.5,114.1,111.5$, 50.4, 40.9; HRMS (ESI+): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 269.0846$, Found: 269.0844; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-34.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

X. Procedure for the preparation of amide 17:

In an oven dried 10 mL round-bottom flask, equipped with a reflux condenser, 3aa ($114.0 \mathrm{mg}, 0.271 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.7 mL of EtOH . To this, 1.36 mL of 20% aqueous KOH solution was added and the resulting solution was refluxed at $90^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was concentrated under reduced pressure to obtain a yellow residue which diluted with 2.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic phase was washed with brine $(5.0 \mathrm{~mL})$, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The
residue was purified by silica-gel flash column chromatography (20\% EtOAc in dichloromethane) to obtain 17 as a yellow sticky liquid ($81.0 \mathrm{mg}, 0.185 \mathrm{mmol}, 68 \%$ yield); FTIR (Thin film): 3464 (w), 3309 (w), 2926 (m), 1676 (s$), 1633$ (s), 1583(s), 1249 (s), 919 (m); ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 7.87(d, ~ J=7.9 ~ H z, ~ 1 H), ~ 7.50 ~(t, ~ J=7.6 ~ H z, ~ 1 H), ~ 7.36-7.34 ~(m, ~$ $1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}$, $1 \mathrm{H}), 6.22-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 168.2,160.3,158.9,149.9,142.9,140.3,139.0,131.6,128.7,128.0,127.9$, 127.9, 126.9, 126.7, 122.7, 120.4, 115.8, 115.3, 114.3, 55.4, 50.4, 45.8, 35.4; HRMS (ESI+): Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 439.2022, Found: 439.2023; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-56.9$ (c $1.0, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (75:25n-Hexane/ i-PrOH, 1.0 $\left.\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 293 \mathrm{~nm}, \tau_{\text {major }}=28.5 \mathrm{~min}, \tau_{\text {minor }}=31.0 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

Y. Procedure for the preparation of 18:

In an oven dried 10 mL round-bottom flask, equipped with a reflux condenser, 17 (40.0 $\mathrm{mg}, 0.102 \mathrm{mmol}, 1.0$ equiv.) was taken in 2.0 mL of THF. To this, 2.0 mL of 20% aqueous NaOH solution was added and the resulting solution was refluxed at $120{ }^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was acidified with 5.0 mL of 1 M HCl and diluted with 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5.0 \mathrm{~mL})$. Combined organic phase was washed with brine (5.0 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography ($14 \% \mathrm{EtOAc}$ in petroleum ether) to obtain 18 as a white sticky liquid (16.0 mg , $0.041 \mathrm{mmol}, 40 \%$ yield); FT-IR (Thin film): 2924 (m), 2365 (w), 1655 (s), 1590 (m), 1511 (m), 1248 (m), 1031 (m); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 ~ M H z, ~ \mathbf{C D C l}_{3}\right): \delta 7.74$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44-7.40 (m, $1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=17.3,10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 162.1,158.8,148.2,142.9,140.5,139.5,130.4,128.9,128.6$, $127.9,127.6,127.0,125.0,122.1,121.9,120.9,115.8,115.7,114.3,55.4,48.9,45.3,38.5$;

HRMS (ESI+): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 396.1964, Found: 396.1961; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-29.1\left(c 0.5, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 98:2 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (75:25 n-Hexane $/ \mathrm{EtOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, 234 \mathrm{~nm}, \tau_{\text {minor }}=8.4 \mathrm{~min}$, $\tau_{\text {major }}=9.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Z. Single crystal X-ray diffraction analysis of 3af:

A single crystal of 3af (recrystallized from 5:1 n - $\mathrm{Hexane} / \mathrm{CHCl}_{3}$ at $0{ }^{\circ} \mathrm{C}$) was mounted and the diffraction data were collected at 296 K on a Bruker SMART APEX CCD diffractometer using SMART/SAINT software. Intensity data were collected using graphite-monochromatized Mo$K \alpha$ radiation ($0.71073 \AA$). The structures were solved by direct methods using the SHELX-97 and refined by full-matrix least-squares on F^{2}. Empirical absorption corrections were applied with SADABS. All Non-hydrogen atoms were refined anisotropically and hydrogen atoms were included in geometric positions. Structure was drawn using Olex-2 and ORTEP-3. The crystallographic refinement parameters are given below:

Table 1. Crystal data and structure refinement for 3af

Identification code	3af
CCDC	1895445
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Formula weight	499.39
Temperature/K	$296(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1}$
a	$5.6996(4) \AA$
b	$7.7973(5) \AA$
c	$26.3857(17) \AA$
α	90°.
β	$90.373(2)^{\circ}$.
γ	90°.
Volume	$1172.59(13) \AA^{3}$
Z	2
Density (calculated)	$1.414 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.781 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	512.0
Crystal size	$0.25 \times 0.15 \times 0.12 \mathrm{~mm}^{3}$

Radiation
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak and hole
Flack parameter
$\operatorname{MoK} \alpha(\lambda=0.71073)$
6.07 to 55.112°.
$-7 \leq \mathrm{h} \leq 7,-10 \leq \mathrm{k} \leq 10,-34 \leq 1 \leq 34$
37814
$5415[\mathrm{R}(\mathrm{int})=0.0931]$
5415/1/299
1.001

$$
\mathrm{R}_{1}=0.0522, \mathrm{wR}_{2}=0.0824
$$

$\mathrm{R}_{1}=0.1302, \mathrm{wR}_{2}=0.1010$
0.23 and -0.24 e. \AA^{-3}
0.044(7)

ORTEP representation of the X-ray structure of enantiopure 3af (thermal ellipsoids at 30\% probability)

[^0]: ${ }^{1}$ a) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B. L. Enantioselective Catalytic Conjugate Addition of Dialkylzinc Reagents using Copper-Phosphoramidite Complexes; Ligand Variation and Non-linear Effects. Tetrahedron 2000, 56, 2865-2878; b) Polet, D.; Alexakis, A. Kinetic Study of Various Phosphoramidite Ligands in the Iridium-Catalyzed Allylic Substitution. Org. Lett. 2005, 7, 1621-1624; c) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Iridium-Catalyzed Synthesis of Primary Allylic Amines from Allylic Alcohols: Sulfamic Acid as Ammonia Equivalent. Angew. Chem. Int. Ed. 2007, 46, 3139-3143.

[^1]: ${ }^{2}$ Ellis, D.; Kuhen, K. L.; Anaclerio, B.; Wu, B.; Wolff, K.; Yin, H.; Bursulaya, B.; Caldwell, J.; Karanewsky, D.; He, Y. Design, Synthesis, and Biological Evaluations of Novel Quinolones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4246-4251.

[^2]: ${ }^{3}$ Igoe, N.; Bayle, E. D.; Fedorov, O.; Tallant, C.; Savitsky, P.; Rogers, C.; Owen, D. R.; Deb, G.; Somervaille, T. C. P.; Andrews, D. M.; Jones, N.; Cheasty, A.; Ryder, H.; Brennan, P. E.; Müller, S.; Knapp, S.; Fish, P. V. Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. J. Med. Chem. 2017, 60, 668-680.

[^3]: ${ }^{4}$ a) Stanley, L. M.; Hartwig, J. F. Iridium-Catalyzed Regio- and Enantioselective N-Allylation of Indoles. Angew. Chem. Int. Ed. 2009, 48, 7841; b) Weix, D. J.; Marković, D.; Ueda, M.; Hartwig, J. F. Direct, Intermolecular, Enantioselective, Iridium-Catalyzed Allylation of Carbamates to Form Carbamate-Protected, Branched Allylic Amines. Org. Lett. 2009, 11, 2944-2947; c) Štambaský, J.; Malkov, A. V.; Kočovský, P. Synthesis of Enantiopure 1-Arylprop-2-en-1-ols and Their tert-Butyl Carbonates. J. Org. Chem. 2008, 73, 9148-9150.

