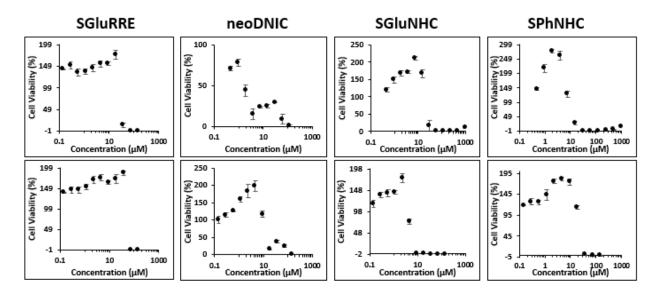
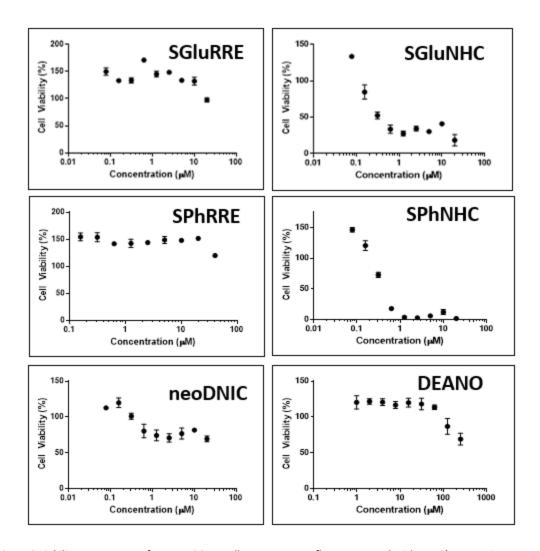
SUPPORTING INFORMATION:

Towards the Optimization of Dinitrosyl Iron Complexes as Therapeutics for Smooth Muscle Cells


Chase Pectol¹, Sarosh Khan^{1,4}, Rachel B. Chupik¹, Mahmoud Elsabahy^{1,4}, Karen L. Wooley^{1,2,3,4}, Marcetta

Y. Darensbourg^{1*}, and Soon-Mi Lim^{1,4*}


¹Departments of Chemistry, ²Chemical Engineering, ³Materials Science & Engineering, and ⁴the Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842-3012, United States

Contents:

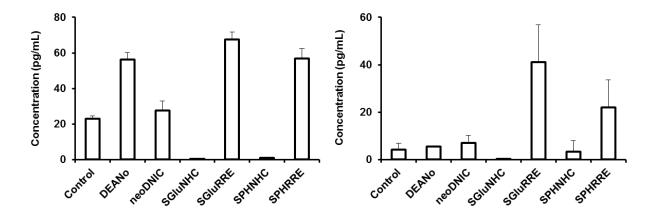

S1 – Other trials of MTS viability assay curves of SMC treated with reported DNIC complexes	2
S2 – MTS assay results for RAW 264.7 cells treated with DNIC's and DEANO	3
S3 - The expression of the mouse cytokines, regulated upon activation normal T-cell expressed	and
presumably secreted (RANTES) (left panel) and tumor necrosis factor-α (TNF-α) (right panel), follow	ving
the treatment of RAW 264.7 cells with media (control), DEANo, neoDNIC, SGluNHC, SGluR	RE,
SPhNHC and SPhRRE at 5 μM for 24 h.	4
S4 – Confocal microscopy images of intracellular NO content upon treatment with neoDNIC	5
S5 – Confocal microscopy images of intracellular NO content upon treatment with SPh/SGluRRE	
and SPh/SGluNHC	6

Figure S1. MTS viability assay curves for SMC grown to confluence treated with DNIC's at varying concentrations. Each trial is a set of biological triplicates.

Figure S2. MTS viability assay curves for RAW 264.7 cells grown to confluence treated with DNIC's at varying concentrations. Each trial is a set of biological triplicates.

Figure S3: The expression of the mouse cytokines, regulated upon activation normal T-cell expressed and presumably secreted (RANTES) (left panel) and tumor necrosis factor- α (TNF- α) (right panel), following the treatment of RAW 264.7 cells with media (control), **DEANo, neoDNIC, SGIuRHE, SPhNHC and SPhRRE** at 5 μ M for 24 h.

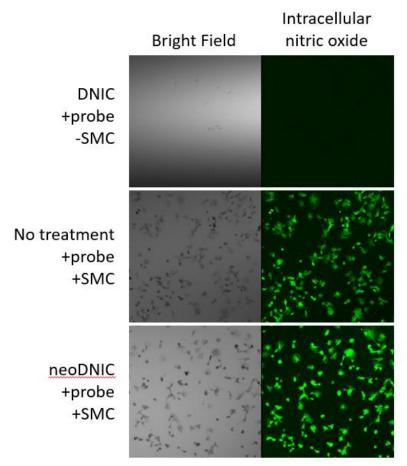


Figure S4: Confocal microscopy images collected with a 10x objective (image size 1.3 μ m × 1.3 μ m). The brighter the green fluorescence, the more nitric oxide present. Concentrations of DNIC are as follows. 30 μ M: SPhRRE, SGluRRE; 5 μ M neoDNIC; 3 μ M: SPhNHC, SGluNHC. To aid in visualization, 100 μ M ι -NNA (ι -nitroarginine), an NOS inhibitor was added to each well.

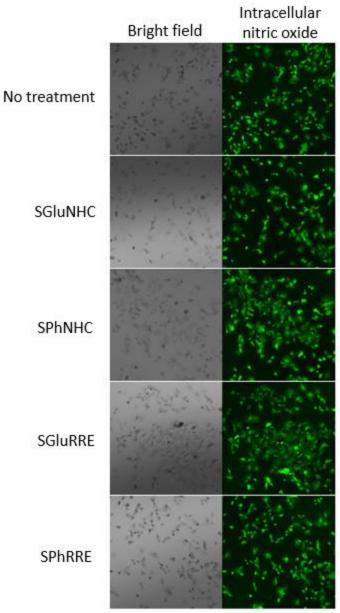


Figure S5: Confocal microscopy images collected with a 10x objective (image size 1.3 μ m \times 1.3 μ m). The brighter the green fluorescence, the more nitric oxide present. Concentrations of DNIC are as follows. 30 μ M: SPhRRE, SGluRRE; 3 μ M: SPhNHC, SGluNHC. To aid in visualization, 100 μ M ι -NNA (ι -nitroarginine), an NOS inhibitor, was added to each well. No treatment indicates that only ι -NNA was present and no DNIC treatments were added.