Supporting Information

ZnO Nanocluster-Functionalised Single-Walled Carbon Nanotubes Synthesized by Microwave Irradiation for Highly Sensitive NO₂ detection at Room Temperature

Suyoung Park,[†] Youngmin Byoun,[⊥] Hyoungku Kang,[‡] Young-Jun Song,^{*,§} Sun-Woo Choi^{*,§}

[†]Department of Aviation Maintenance Engineering, Far East University, Eumseong-gun, Chungcheongbuk-do 27601, Republic of Korea

^LMetal & Machinery Team, Korea Conformity Laboratories (KCL), Seoul 08503, Republic of Korea

[‡]Department of Electrical Engineering, Korea National University of Transportation, Chungju-

si, Chungcheongbuk-do 27469, Republic of Korea

[§]Department of Materials Science and Engineering, Kangwon National University, Samcheok-

si, Gangwon-do 25912, Republic of Korea

* Corresponding authors. E-mail: <u>yjsong64@kangwon.ac.kr</u> (Y.-J. Song), <u>csw0427@kangwon.ac.kr</u> (S.-W. Choi)

• Calculation of detection limit (DL)^{equation S1, S2}

- As shown in Fig. S1(a), the slope value (~ 0.552) and the value of goodness-of-fit (R²,
 ~ 0.98) were derived from the response values versus NO₂ concentration of the fabricated sensor.
- 2. Before NO₂ gas injected in the gas chamber, we have taken resistance points of N = 11 at the base line.
- 3. As shown in Fig. S1(b), We have plotted the data (resistance value versus time) and then a 5th order polynomial fit is performed within data-point range (see Table S1).
- 4. To obtain the theoretical detection limit (DL), the root-mean squared deviation (RMS_{noise}) has been calculated as follows,

$$RMS_{noise}(ppm^{-1}) = \sqrt{\frac{V_{x^2}}{(N-1)}}$$
, where $V_{x^2} = \sum (Y_i - Y)^2$ (equation S1)

Where Y_i is the measured resistance value and Y is the corresponding value calculated from the curve-fitting equation. The DL value could be finally calculated using the following equation.

Detection limit (DL) =
$$3 \times \frac{RMS_{noise}}{slope}$$
 (equation S2)

Figure S1. High-resolution TEM images of (a) pristine and (b) MW-irradiated SWCNTs.

Figure S2. XPS results of the Z-SWCNTs: (a) survey-scanned XPS spectrum of Z-SWCNTs, core level XPS spectra of (b) C 1s, (c) O 1s and (d) Zn 2p.

Figure S3. Fitting plots of Z-SWCNT sensor: (a) linear fitting, (b) 5th order polynomial fitting.

Figure S4. (a) Long-term stability of the Z-SWCNTs, and (b) comparison of the NO₂ response of Z-SWCNTs under dry air, RH 54% and RH 79% humid air, respectively.

Figure S5. Resistance curves of the *n*-ZnO NC-functionalised defect-induced SWCNTs: (a) pristine SWCNTs, (b) 0.5Z-SWCNTs, (c) Z-SWCNTs, (d) 2Z-SWCNTs, and (e) 3Z-SWCNTs. (d) Initial resistance values of each sensor. (f) Summary of initial resistance values of the fabricated sensors.

Time (sec)	$(Y_i - Y)$	$(Y_i - Y)^2$
145	0.0101	0.000102
150	-0.00508	2.58×10^{-5}
155	-0.00616	3.79×10^{-5}
160	-0.00024	5.76×10^{-8}
165	-0.00052	2.7×10^{-7}
170	-0.0496	0.00246
175	-0.00068	4.62×10^{-7}
180	-0.00076	5.78×10^{-7}
185	0.0002	4.8×10^{-8}
190	-2×10^{-5}	4×10^{-10}
195	-1×10^{-5}	1×10^{-10}

Table S1. Polynomial fitting data of the Z-SWCNT sensor

Concentration Temperature Materials Gas response Reference $(^{\circ}C)$ (ppm) 5.03 **Z-SWCNTs** 1 RT this work (R_a/R_g) 403% **Z-SWCNTs** 1 RT this work $(\Delta R/R_a) \times 100$ Cu₂O-conjugated 67.8% 2 RT 1 RGO* $(\Delta I/I_a) \times 100$ 238.73% SnO₂-ZnO 2 1 RT core-shell NWs $(\Delta R/R_a) \times 100$ 80% Co₃O₄-intercalated 60 RT 3 RGO $(\Delta R/R_a) \times 100$ 12% PPy** thin films 10 RT 4 $(\Delta R/R_a) \times 100$ 25.6% ZnO-RGO hybrid 5 RT 5 $(\Delta R/R_a) \times 100$ rGO-CNT-SnO₂ 2.53 5 RT 6 hybrid (R_a/R_g) 0.30 Mesoporous NiO 5 7 RT nanosheets $(\Delta G/G_a)$ TeO_2 - SnO_2 9.97 3 RT 8 heterostructure (R_a/R_g) 12.87% 9 5 Bi-layer graphene RT $(\Delta R/R_a) \times 100$

Table S2. Comparison of NO₂-response in Z-SWCNT sensor with various types of sensors prepared different sensing materials

* rGO: Reduced graphene oxide, ** PPy: Polypyrrole,

References

(1) Deng, S.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.;

Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu₂O nanowire mesocrystals for high-performance NO₂ gas sensor, *J. Am. Chem. Soc.* **2012**, *134*, 4905–4917.

- (2) Park, S.; An, S.; Mun, Y.; Lee, C. UV-enhanced NO₂ gas sensing properties of SnO₂-Core/ZnO-shell nanowires at room temperature, *ACS Appl. Mater. Interfaces* 2013, *5*, 4285–4292.
- (3) Chen, N.; Li, X.; Wang, X.; Yu, J.; Wang, J.; Tang, Z.; Akbar, S. A. Enhanced room temperature sensing of Co₃O₄-intercalated reduced graphene oxide based gas sensors, *Sens. Actuators B: Chem.* 2013, 188, 902–908.
- (4) Navale, S. T.; Mane, A. T.; Chougule, M. A.; Sakhare, R. D.; Nalage, S. R.; Patil, V. B. Highly selective and sensitive room temperature NO₂ gas sensors based on polypyrrole thin films, *Synthetic Met.* 2014, *189*, 94–99.
- (5) Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO₂ gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids, *Sens. Actuators B: Chem.* 2014, 202, 272–278.
- (6) Liu, S.; Wang, Z.; Zhang, Y.; Zhang, C.; Zhang, T. High performance room temperature NO₂ sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids, *Sens. Actuators B: Chem.* 2015, 211, 318–324.
- (7) Zhang, J.; Zeng, D.; Zhu, Q.; Wu, J.; Huang, Q.; Xie, C. Effect of nickel vacancies on the room-temperature NO₂ sensing properties of mesoporous NiO nanosheets, *J. Phys. Chem. C* 2016, *5*, 3936–3945.
- (8) Yeh, B.-Y.; Huang, P.-F.; Tseng, W. J. Enhanced room-temperature NO₂ gas sensing with TeO₂/SnO₂ brush- and bead-like nanowire hybrid structures, *Nanotechnology* 2017, 28, 045501.
- (9) Seekaew, Y.; Phokhaatkul, D.; Wisitsoraat, A.; Wongchoosuk, C. Highly sensitive and selective room-temperature NO₂ gas sensor based on bilayer transferred chemical vapor deposited graphene, *Appl. Surf. Sci.* 2017, 404, 357–363.